BASIC-11/RT-11
User’s Guide
AA-5071B-TC

BASIC-11/RT-11
User’s Guide
AA-5071B-TC

March 1983

This document describes the system-dependent features of
BASIC-11/RT—-11. In conjunction with the BASIC-11 Language Refer-
ence Manual (AA—1908A-TC), this document provides the information
required to write and run a BASIC—11 program under the RT—11 opera-
ting system.

This document supersedes the BASIC-11/RT-11 User's Guide
(AA-5071A-TC).

Operating System: RT—11 Version 5.0
Software: BASIC-11/RT-11 Version 2.1

To order additional documents from within DIGITAL, contact the Software Distribution
Center, Northboro, Massachusetts 01532.

To order additional documents from outside DIGITAL, refer to the instructions at the back
of this document.

digital equipment corporation - maynard, massachusetts

. LI

First Printing, September 1977
Revised, March 1983

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this docu-
ment.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by DIGITAL or its affiliated companies.

© Digital Equipment Corperation 1977, 1983.
All Rights Reserved.

Printed in U.S.A.

" A postage-paid READER’S COMMENTS form is included on the last page of this

document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

alifaliltlal i

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem-10 P/OS VMS
DECSYSTEM-20 Professional VT

DECUS Rainbow Work Processor
DECwriter RSTS

DIBOL RSX

M21800

AL

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

CONTENTS

GETTING STARTED WITH BASIC-11/RT-11

OPTIONAL FEATURES
STARTING BASIC-11

Running BASIC-11 with the SJ Monitor

or as the Background Job

Running BASIC-11 as the Foreground Job

Running BASIC-11 from an Indirect File
STOPPING BASIC-11 PROGRAMS (CTRL/C COMMAND)
TERMINATING THE SESSION (BYE COMMAND)
FLOATING-POINT NUMBER PRECISION
SYSTEM-DEPENDENT ERROR MESSAGES

FILES

FILE SPECIFICATION

THE OPEN STATEMENT - SYSTEM-DEPENDENT
FEATURES

LISTING YOUR FILE DIRECTORY

UTILITY FUNCTIONS

BASIC-11 UTILITY FUNCTIONS

SETTING THE TERMINAL MARGIN (TTYSET FUNCTION)

CANCELING THE EFFECT OF CTRL/O
(RCTRLO FUNCTION)
DISABLING CTRL/C (RCTRLC AND CTRLC
FUNCTIONS)
TERMINATING YOUR PROGRAM (ABORT FUNCTION)
SYSTEM FUNCTIONS

Single Character Input

Terminating BASIC-11

Checking for CTRL/C

Enabling Lowercase Support

USING ASSEMBLY LANGUAGE ROUTINES
WITH BASIC-11

INTRODUCTION TO ASSEMBLY LANGUAGE ROUTINES
FORMAT OF THE ASSEMBLY LANGUAGE ROUTINE
ACCESSING THE ARGUMENTS- - THE ARGUMENT
LISTS

Numeric Arrays

Strings and String Arrays

iii

(-
l I
N =

B ERe e
1
[« IS NG T I Y

W Www
[[| (I}
N e

WWwwwwww
|
NI bW

[
|
—

RNt
|
[N

b D
|
N

e

USING ROUTINES PROVIDED BY BASIC-11 4

1 Error Handling and Message Routines 4-
.2 Mathematical Operation and Function
Routines 4-12

INDEX

FIGURES

FIGURE 4-1 User Routine Name Table and Routine Name
Formats 4-2
Assembly Language Routine Argument Lists 4-5
Format of the Argument Descriptor Word 4-6
Format of Array and String Argument
Descriptors 4-7
State of Stack for Threaded Code Routines 4-1
Argument List for Supplied Single-Precision
Routines 4-16
4-7 Argument List for Supplied Double-Precision
Routines 4-17

S
|
W N

IS
|
[e) W0,

TABLES

TABLE 2-1 RT-11 Device Names 2-1
2-2 Default File Names 2-2
2-3 Default File Types 2-2
3-1 Summary of System Functions 3-6
4-1 Using String Access Routines 4-1
4-2 BASIC-11 Mathematical Operations 4-1
4-3 4-1

BASIC-11 Mathematical Functions

ww

iv

PREFACE

Before reading this manual, you should be familiar with the BASIC-11
language and the RT-11 operating system. If necessary, read the
following manuals before reading this user's guide:

) BASIC-11 Language Reference Manual (AA-1908A-TC)

® Introduction to RT-11 (AA-5281C-TC)

or

® RT-11 System User's Guide (AA-5279C-TC)

Most features of BASIC-11/RT-11 V2.1 are the same as in other versions
of BASIC-11 (DIGITAL's name for the family of BASICs for the PDP-11).
These features are described in the BASIC-11 Language Reference Manual
(AA-1908A-TC) .

Some features of BASIC-11/RT-11 are specific to the RT-11 operating
system software, and may differ from other BASIC language software.

This guide describes the following system-dependent features of
BASIC-11/RT-11:

Procedure for starting BASIC-11

Effect of the CTRL/C key command

Accuracy of storing numbers

Format of error messages

Format of the file specification

Effects of parameters in the OPEN statement
Procedure for checking files

Effect of superseding files

Effects of the utility functions

Procedure for using assembly language routines
Procedure for terminating BASIC-11

All BASIC-11 users should read all of this guide except Chapter 4.
Only users who are adding assembly language routines to BASIC-11 need
to read Chapter 4. Chapter 4 is written for the experienced RT-11
MACRO-11 programmer.

This guide assumes that you have linked your BASIC-11 software
according to the procedure described in the BASIC-11/RT-11
Installation Guide.

Documentation Conventions

This section describes the documentation conventions, notations, and
symbols used throughout this manual.

The following symbols denote special terminal keys that you will use
frequently when using BASIC-11.

Symbol Meaning

<CTRL/X> While pressing the CTRL key, type the letter indicated
after the slash.

<RET> Type the RETURN key.
<ESC> Type the ESCAPE key (ALTMODE on some terminals).
 Type the DELETE key (RUBOUT on some terminals).

In addition, this manual uses certain conventions when describing the
format of statements, functions, and commands.

These are:
Convention Meaning
The enclosed elements are optional. For example:
LET variable=expression
A choice of one element among two or more
possibilities, for example:
THEN statement
IF relational expression THEN line number

GO TO line number

oo Preceding element can be repeated as indicated.
For example:

line number CLOSE#exprl, #expr2,...

Items in Type these elements exactly as they appear in the
capital format, for example:
letters and
special LET
symbols RUN
#

Items in capital letters are called keywords.

Items in Replace these elements according to the
lowercase description provided in text. See below for list
letters of commonly used lowercase items.

vi

This list describes some lowercase 1items commonly wused in format
descriptions. The general meaning of each item is given. Unless a
specific format description places restrictions on an item, its
general meaning applies. See the BASIC-11 Language Reference Manual
for more information on these items.

Lowercase Abbreviation Meaning
Item
expression expr Any valid BASIC-11 expression.
It is always a numeric
expression unless the

description specifically states
that it can be a numeric or
string expression. For
example: (5*SIN(X)) Y

file specification - A file specification as
described in Section 2.1

integer int Any positive integer number
constant or any positive
numeric constant that could be
an integer 1if a percent sign
were put after it. For
example: 5%, 3%, 2, 7

line number -— Any valid 1line number. For
example: 10, 100, 32767

string -——- Any string expression. For
example: "ABC", CS$S+SEGS(AS$,3,4)

variable var A floating-point, 1integer, or

string variable.

If more than one of the same lowercase word appears in a fbrmat, the
words are numbered 1, 2, 3, etc. For example:

CLOSE #exprl,#expr2,#expr3,...
Examples of computer output and input are presented in bold type. To
differentiate between what BASIC-11 prints and what you type, the user
input is printed in red ink. For example:

RUNNH

WHAT NUMBERS? 5,10
THE SUM IS 15

READY

All user input is terminated by the RETURN key unless the text
indicates a different terminator.

vii

AL

CHAPTER 1

GETTING STARTED WITH BASIC-11/RT-11

1.1 OPTIONAL FEATURES

BASIC-11/RT-11 provides many optional features. If you include all
optional features, you can perform all operations described in the
BASIC-11 Language Reference Manual or in this guide. By excluding

some or all optional features, you can increase the amount of memory
available for programs, increase the speed of program execution, or
both.

Optional Statements:

CALL
PRINT USING

Optional Commands:

SUB
RESEQ

Optional Functions:

SOR SYS TAB LEN TRMS
SIN RCTRLO RND ASC STR$S
cos ABORT ABS CHRS PI
ATN TTYSET SGN POS INT
LOG CTRLC BIN SEGS OATS
LOG 19 RCTRLC OCT VAL CLK$
EXP

Miscellaneous Optional Features:

e Double-precision arithmetic

e Short error messages

e Exponentiation (for example, the expression A"B)

e Ability to run BASIC-11 as foreground or background job

e Features affecting program space availability and program
execution speed

GETTING STARTED WITH BASIC-11/RT-11

You must specify the inclusion or exclusion of some optional features
when you 1link BASIC-11. You select other optional features when you
run BASIC-11. The features you can choose when you link BASIC-11 are:

All optional statements

All optional commands

SOR, SIN, COS, ATN, EXP, LOG, and LOG1@ functions
All miscellaneous optional features

The features you can choose at run time are the following optional
functions:

sSYsS ABS SEGS
RCTRLO SGN VAL
ABORT BIN TRMS
TTYSET OCT STRS
CTRLC LEN PI

RCTRLC ASC INT
TAB CHRS DATS
RND POS CLKS$

Before using BASIC-11 you must 1link a version with the optional
features vyou want. See the BASIC-11/RT-11 Installation Guide for
instructions to 1link BASIC-11 and for information about allowed
program size and speed of execution tradeoffs.

1.2 STARTING BASIC-11

You can use BASIC-11 with the single-job (sJ), the
foreground/background (FB), or the extended memory (XM) RT-11 Version
5 monitor. When using the FB or XM monitor, you can run BASIC-11 as
either the foreground or the background job.

Before starting BASIC-11, you must bootstrap the RT-11 operating
system and enter the DATE and TIME commands. See the Introduction to
RT-11 for a description of these procedures.

1.2.1 Running BASIC-11 with the SJ Monitor or as the Background Job
To run BASIC-11 with the SJ monitor or as the background Jjob under the
FB or the XM monitor, enter either the BASIC or the RUN command. The
BASIC command runs the file BASIC.SAV on your system device. To enter
the BASIC command, type:

.BASIC
To use another version of BASIC, type:

.RUN file specification

where:

file specification specifies the file containing the
version of BASIC that you want.

GETTING STARTED WITH BASIC-11/RT-11

For example, if you have a version of BASIC on device DX1: with file
name BAS8K, and you want that version instead of the one in BASIC.SAV,
you should enter:

-RUN DXl :BAS8K
If you specify a file that does not exist, RT-11 prints the message:
?KMON-F-File not found DEV:FILNAM.TYP

If there is not enough room in memory to run BASIC-11, one of the
following messages is printed:

NOT ENOUGH MEMORY FOR BASIC
or
?KMON-F-Insufficient memory

This error often results from a large foreground Jjob that has not been
unloaded.

If there are no errors, BASIC-11 prints an 1identifying message and
inquires whether you want the optional functions that you can select
at run time.

«BASIC
BASIC-11/RT-11 V2.1
OPTIONAL FUNCTIONS (ALL, NONE, OR INDIVIDUAL)?

To include all of the optional functions, type A<KRET>. To exclude all
of the optional functions, type N<KRET>. (You must always terminate
input to BASIC-11 with the RETURN key.) BASIC-11 then prints the READY
message. For example:

OPTIONAL FUNCTIONS (ALL, NONE, OR INDIVIDUAL)?A
READY

Typing only the RETURN key in response to the optional functions
request is equivalent to typing A.

If you want to include some but not all optional functions, type
I<KRET>. BASIC-11 then prints a query for each function individually.
To include a function type a Y; otherwise type an N. Typing only the
RETURN key in response to the function request is equivalent to typing
Y. If you type anything else, BASIC-11 repeats 1its request. After
you have typed a Y or an N 1in response to each function query,
BASIC-11 prints the READY message. For example:

OPTIONAL FUNCTIONS (ALL, NONE, OR INDIVIDUAL)? I
SYS? N

RCTRLO? N

ABORT? N

TTYSET? N

CTRLC & RCTRLC? N

TAB?
RND?
ABS?
SGN?
BIN?
oCcT?

g R R G

<Ak

GETTING STARTED WITH BASIC-11/RT-11

LEN? N
ASC? N
CHRS$? N
POS? N
SEGS$? N
VAL? N
TRMS$? N
STRS$? N
PI? N

INT? Y
DATS? N
CLKS$? N

READY

1.2.2 Running BASIC-11 as the Foreground Job
To run BASIC-11 as the foreground job, use the FRUN command. Type:
.FRUN file specification /N:number.
where:
file specification specifies the file containing BASIC-11
number is the size of the user area (that |is,
the number of words to be reserved). It
must be 10@#@#. or greater. The decimal

point identifies the number as decimal,
not octal.

You must specify the user area size, or else no area will be reserved
and BASIC-11 will not be able to run.

The user area will actually be approximately 108 words more than you
request. For example, the following command reserves approximately
3190 words.

.FRUN BASIC/N:3000.
If the file specified does not exist, RT-11 prints the message:
?KMON-F-File not found DEV:FILNAM.TYP

If the number of words requested in the FRUN command 1is not large
enough, BASIC-11 prints the message:

NOT ENOUGH MEMORY FOR BASIC

If there are no errors, RT-11 prints its prompting dot (.). After the
CTRL/F command is typed the F> characters are printed to indicate that
command input is being directed to the foreground job. BASIC-11 then
prints an identifying message and inquires whether you want the
optional functions. For example:

.FRUN BASIC/N:3000.

.{CTRL/F>

F>

BASIC-11/RT-11 V2.1

OPTIONAL FUNCTIONS (ALL, NONE, OR INDIVIDUAL)?

GETTING STARTED WITH BASIC-11/RT-11

Type a CTRL/F in response to the dot prompt and answer the optional
function query as described in the previous section.

NOTE

To use a device other than the system
device, you must load the handler before
you run BASIC-11 in the foreground. See
the RT-11 System User's Guide for more
information about foreground Jjobs.

1.2.3 Running BASIC-11 from an Indirect File

You can run BASIC-11 and answer the initial dialog by wusing an
indirect file. You <can only run BASIC-11 in this way as the
background job or in the single-job monitor. This technique is useful
when you select the optional functions individually.

You cannot enter any BASIC-11 command, program line, or immediate mode
ctatement through an indirect file.

To create the indirect file, direct the editor to create a file with a
file type .COM that contains all anticipated responses to system
queries. For example:

.R EDIT
*EWMINRUN.COM <ESC><ESC>
*IR BASIC

ZZKZZZ222 222 2K KKK KZZ22 222

<ESC><ESC>
*EX <ESC><ESC>

°

GETTING STARTED WITH BASIC-11/RT-11

To start BASIC-11, type an at sign (@) followed by the file name. The
complete initial dialog is printed on the terminal. For example:

- @MINRUN

-R BASIC

BASIC-11/RT-11 V2.1

OPTIONAL FUNCTIONS (ALL, NONE, OR INDIVIDUAL)? I
SYS? N

RCTRLO? N

ABORT? N

TTYSET? N

CTRLC & RCTRLC? N

TAB?
RND?
ABS?
SGN?
BIN?
oCT?
LEN?
ASC?
CHRS$? N
POS? N
SEG$? N
VAL? N
TRMS? N
STRS? N
PI? N
INT? Y
DATS? N
CLKS? N

222

READY

See the RT-11 System User's Guide for more information on using
indirect files.

1.3 STOPPING BASIC-11 PROGRAMS (CTRL/C COMMAND)

To stop execution of a BASIC-11 program, use the CTRL/C command. If
you type one CTRL/C, BASIC-11 interrupts your program the next time it
requests input. If you type two consecutive CTRL/Cs, BASIC-11

interrupts your program immediately. After BASIC-11 interrupts your
program, it prints:

STOP AT LINE XXXXX
READY
where:

XX XXX is the number of the line that BASIC-11 was executing
when the CTRL/C command halted the program.

However, if you were not executing a program line, BASIC-11 prints:
STOP

READY

XL

GETTING STARTED WITH BASIC-11/RT-11

When you type CTRL/C, the system prints "C. For example:

19 GO TO 19
RUNNH

“c “c
STOP AT LINE 10

READY

NOTE

CTRL/C does not return control to the
RT-11 monitor. You must type the BYE
command (see Section 1.4) to return
control to RT-11.

1.4 TERMINATING THE SESSION (BYE COMMAND)

To terminate a session with BASIC-11, type the BYE command. The BYE
command returns control to the RT-11 monitor, which prints its
prompting dot. For example:

BYE

Once you have entered the BYE command you cannot use the RT-11 REENTER
command to return to BASIC-11. Instead, you must restart BASIC-11 as
described in Section 1.2. If you want to reuse your BASIC-11 program,
save it before you enter the BYE command.

If you ran BASIC-11 as the foreground job, you must wunload it after
you enter the BYE command. Type:

.UNLOAD FG

1.5 FLOATING-POINT NUMBER PRECISION

You can use BASIC-11 with either single- or double-precision
arithmetic. Single-precision arithmetic allows floating-point numbers
to seven digits of precision. Thus, single-precision BASIC-11 stores
the numbers 1.000001 and 1.000000 (seven digits) differently but
stores 1.0000001 and 1.000d000 (eight digits) as the same number.
Double-precision arithmetic allows you to specify floating-point
numbers to 15 digits of precision.

...

GETTING STARTED WITH BASIC-11/RT-11

If you need more than seven digits of precision, you should wuse
BASIC-11 with double-precision arithmetic. However, double-precision
BASIC-11 has two disadvantages:

1. It allows 1less BASIC-11 program space, because BASIC-11
itself requires more memory and because all floating point
constants, variables, and arrays require twice the amount of
memory that single-precision needs.

2. Arithmetic operations and functions run more slowly with
double precision than with single precision.

The PRINT statement only prints six digits even when you are using
double-precision arithmetic. Consequently, 1if you want to print a
number with more than six digits, you must use the PRINT USING
statement or the STRS function. The following example was run using
double-precision arithmetic.

LISTNH

10 X=4.237194237

20 Y=6.9090909

39 PRINT X*Y

4¢ PRINT USING "##.####%44" ,X*Y
5@ PRINT STRS (X*Y)

READY
RUNNH

29.2752
29.2751601
29.275160144389

READY

Double-precision programs compiled by BASIC-11 are assigned the
default file type .BAX and single-precision programs compiled by
BASIC-11 are assigned the default file type .BAC. The different
default file types are necessary because double-precision BASIC-11
cannot read a program compiled by single-precision BASIC-11, and vice
versa. If you are using double-precision BASIC-11 and you specify the
file type of a program compiled by single-precision BASIC-11, or vice
versa, the results are unpredictable.

1.6 SYSTEM-DEPENDENT ERROR MESSAGES

Some of the error messages listed in the BASIC-11 Language Reference
Manual either have special meaning in BASIC-11/RT-11 or are not

produced by it. These error messages are:

?CANNOT DELETE FILE (?CDF)
BASIC-11/RT-11 does not produce this message.

?ERROR CLOSING CHANNEL (?ECC)
BASIC-11/RT-11 does not produce this error message. If an error
occurs when BASIC-11/RT-11 1is trying to close a channel,
BASIC-11/RT-11 prints the message ?CHANNEL I/O ERROR (?CIE).

?FILE ALREADY EXISTS (?FAE)
BASIC-11/RT-11 does not produce this message.

GETTING STARTED WITH BASIC-11/RT-11

?FILE PRIVILEGE VIOLATION (?FPV)
BASIC-11/RT-11 does not produce this message.

?FILE TOO SHORT (?FTS)
The file is too small to contain the output. If the error occurs
in a data file, specify a larger FILESIZE. If the error occurs

in a program file, delete unused files with the UNSAVE command
and then try the operation again.

?ILLEGAL DEF (?IDF)
BASIC-11/RT-11 does not produce this message.

?ILLEGAL FILE LENGTH
The FILESIZE specified is less than -1 (see Section 2.2).

?ILLEGAL RECORD SIZE (?IRS)
BASIC-11/RT-11 does not produce this message.

?NOT A VALID DEVICE (?NVD)
BASIC-11/RT-11 does not produce this message.

?NOT ENOUGH ROOM (?NER)

Not enough room is available for the FILESIZE specified. Delete
unused files with the UNSAVE command.

2.1 FILE SPECIFICATION

BASIC-11 uses the

format is:

CHAPTER 2

FILES

standard RT-11 file specification format. The

device:filename.type

where:

device

filename

type

is the device name. It can be any device name
listed in Table 2-1 or any assigned device name (see
the RT-11 System User's Guide).

is the one- to six-character name of the file.

is the zero- to three-character type of the file,

Table 2-1
RT-11 Device Names

Code Device

DLn: RLO1/02 Disk

DMn: RK@P6/07 Disk

DUn: RC25/RD51 Disk, RX5@ Diskette
DXn: RX@1 Diskette

DYn: RXf2 Diskette

LP: Line printer

LS: Serial line printer

MMn : TJU1l6 Magtape

MTn: TM11 Magtape

(continued on next page)

FILES

Table 2-1

(Cont.)

RT-11 Device Names

Code Device
RKn: RK@5/RK11 Disk
TT: Console terminal keyboard/printer
SYn: System device (the volume from which the
monitor was bootstrapped)
DK: The default storage volume
If you do not specify any of the elements of the file specification,

BASIC-11 uses a default value.

The default device is DK:. The default for the file name and file
type depends on the statement or command in which the file
specification appears. Table 2-2 shows the file name defaults, and
Table 2-3 shows the file type defaults.
Table 2-2
Default File Names
Statement or Command Default

SAVE ,REPLACE ,COMPILE

OLD,APPEND,CHAIN
OVERLAY

UNSAVE , OPEN,KILL
NAME

the current program name
the file name NONAME
no default but prints

the ?ILLEGAL FILE
SPECIFICATION

(?IFS)

error message instead

Table 2-3

Default File Types

Statement or Command

Single-precision
BASIC-11 Default

Double-precision
BASIC-11 Default

OPEN,KILL,NAME

SAVE ,REPLACE ,UNSAVE
APPEND

COMPILE

RUN,OLD

.DAT .DAT
.BAS .BAS
.BAC .BAX

.BAC (.BAS if a .BAC

cannot be found)

.BAX (.BAS if a
.BAX cannot be
found)

FILES

When you create a file whose file specification 1is the same as an
existing file, the older file is deleted (superseded) when the new
file is closed. You can avoid accidental deletions by using the SAVE
command to save new files. If the SAVE command specifies a file name
that already exists, BASIC-11 prints the following error message:

?USE REPLACE (?RPL)
This gives you an opportunity to decide whether you want to supersede

the old file, or to store the file under a different file
specification.

2.2 THE OPEN STATEMENT - SYSTEM-DEPENDENT FEATURES
The format of the OPEN statement is:
FOR INPUT

OPEN string FOR OUTPUT AS FILE # exprl DOUBLE BUF
,RECORDSIZE expr2 ,MODE expr3 ,FILESIZE expr4

where:

string is a file specification as described in
Section 2.1.

exprl is the channel number of the file. It can
have any value between 1 and 12.

DOUBLE BUF causes the file to be double buffered.
Double buffering increases the speed of some
file operations but requires additional
memory for the second buffer.

RECORDSIZE expr2 is ignored if specified.

MODE expr3 is ignored if specified.

FILESIZE expr4 if positive, specifies the maximum number of

256-word blocks the file <can occupy. If
FILESIZE is missing or exprd4 -equals ¢, 'it
requests the standard BASIC-11/RT-11 file
allocation (that is, either half the largest
free area or all of the second-largest free
area, whichever is larger). If expr4 equals
-1, it requests the absolute largest free
area. If exprd is less than -1, the error
message ?ILLEGAL FILE LENGTH appears. ‘

The elements of the OPEN statement described above are the system.
dependent elements. The other elements of the OPEN statement are
described in the BASIC-11 Language Reference Manual.

FILES

2.3 LISTING YOUR FILE DIRECTORY

You must return control to the RT-11 monitor before you list your file
directory. First save your current BASIC-11 program (if you wish to
reuse it later) and then enter the BYE command. The monitor prints
the dot prompt. For example:

SAVE TEMP

READY
BYE

Following the prompt, type the RT-11 DIRECTORY command. A simplified
format of the RT-11 directory command (see the RT-11 System User's
Guide for a complete description) is:

DIRECTORY /PRINTER file specification
where:
PRINTER specifies that the directory 1is to be
printed on the 1line ©printer. (If

omitted, the directory is printed on the
terminal.)

file specification specifies the files that you want
listed. If you omit the file
specification, all files are listed.

The DIRECTORY command wildcard feature allows you to specify files
with similar file names, similar file types, or Dboth. If you
substitute an asterisk for the file name and specify a file type, all
files with that file type are listed. For example, the following
command lists all BASIC-11 source programs on the line printer:

-DIRECTORY/PRINTER *.BAS

Similarly, if you substitute an asterisk for the file type, and
specify a file name, all files with that file name are listed,
regardless of their file types. For example, the following command
lists all files with the file name TEST:

-DIRECTORY/PRINTER TEST.*

If you specify a percent sign in place of any characters in a file
name or file type (for example, TEST%%.BAS), all the files whose
specifiers match the other characters in the specification are listed
(TESTAB.BAS, TEST@1l.BAS, and TESTER.BAS would be 1listed, if they
existed, for the specification TEST%%.BAS).

To list all the BASIC-11 programs and all the compiled BASIC-11
programs, type:

-DIRECTORY *.BA%
Note that this command also lists files with the file type .BAK and

.BAT. Because the /PRINTER option was not specified, the listing is
printed on the terminal.

AEL

FILES

After you list your directory, return to BASIC-11 by using the BASIC
command. Restore your saved program with the OLD command, and then,

delete the temporary file. For example:

.BASIC
BASIC-11/RT-11 V2.1
OPTIONAL FUNCTIONS (ALL, NONE, OR INDIVIDUAL)? A

READY
OLD TEMP

READY
UNSAVE TEMP

READY

SR

CHAPTER 3

UTILITY FUNCTIONS

3.1 BASIC-11 UTILITY FUNCTIONS
BASIC-11 has utility functions to:
e Change the terminal width (TTYSET)
e Cancel the effect of CTRL/O (RCTRLO)
e Disable CTRL/C (CTRLC and RCTRLC)
e Terminate your program (ABORT)
e Input a single character from your terminal (SYS)
e Terminate BASIC-11 (SYS)
e Check if a CTRL/C has been typed (SYS)
® Enable lowercase support (SYS)

In the following sections, BASIC-11 utility functions are shown in the
context of a LET statement with a dummy target variable, as follows:

LET variable = (utility function)

where:
variable is the target variable.
utility function is one of the functions described in this
chapter.
Utility functions can appear in any arithmetic expression. The LET

statement format is recommended because it is the simplest statement.

3.2 SETTING THE TERMINAL MARGIN (TTYSET FUNCTION)

Use the TTYSET function to set your terminal's right margin. BASIC-11
prints on a line until a number or string extends past the margin you
set. BASIC-11 then prints a return and line feed on the current 1line
and prints the string or number on the next line.

UTILITY FUNCTIONS

The format of the TTYSET function is:

LET variable=TTYSET (255%,expression)

where:
variable is the target variable and contains an undefined
value after the statement is executed.
255% is either a numeric constant (as specified in
' format) or an expression with an integer value of
255 (for compatibility with other versions of
BASIC) .
expression specifies the right margin of the terminal. The

margin is set to the value.of the expression minus
1. 1If the expression equals @, BASIC-11 does not
change the previous margin.

For example, to set BASIC-11 to print to the full width of an LA36
DECwriter II (132 columns), type:

A=TTYSET (255%,133%)

To set BASIC-11 to print to the full width of a VT5¢ display terminal
(80 columns), type:

A=TTYSET (225%,81%)

If you do not specify the TTYSET function, BASIC-11 assumes a terminal
with 72 columns. ‘

Make sure that the system's margin for your terminal is equal to or
greater than the margin you specify in TTYSET.

If the value of the expression is less than @, equal to 1, or greater
than 256, BASIC-11 prints the ?ARGUMENT ERROR (?ARG) message. If the

first argument has a value other than 255, BASIC-11 prints the same
message.

3.3 CANCELING THE EFFECT OF CTRL/O (RCTRLO FUNCTION)
BASIC-11 stops terminal output when the CTRL/O key is typed; however,
the RCTRLO function causes BASIC-11 to resume printing. Use the
RCTRLO function to ensure that certain data is printed on the terminal
even if a CTRL/O is typed.
The format of the function is:

LET variable=RCTRLO

where:

variable is the target variable and contains an undefined
value after the statement is executed.

UTILITY FUNCTIONS

Consider the following example:

LISTNH

10 REM PROGRAM TO INPUT DATA
20 REM FROM FILE AND PRINT SUM
30 OPEN "NUMBR" FOR INPUT AS FILE #1
4¢ PRINT "DATA IN FILE:"

5¢ IF END #1 THEN 100

60 INPUT #1,D

7¢0 PRINT D

80 T=T+D

96 GO TO 50

100 A=RCTRLO

11¢ PRINT

120 PRINT "SUM=";T

READY
RUNNH

4

16

147

26
<CTRL/0O>

SUM= 4172
READY
BASIC-11, while executing the loop from line 58 to line 98, prints out

numbers. If CTRL/0 is typed BASIC-11 stops printing. But when
BASIC-11 executes line 100, it resumes printing.

3.4 DISABLING CTRL/C (RCTRLC AND CTRLC FUNCTIONS)

In certain parts of a program you may need to override CTRL/C
interrupts from the terminal. The RCTRLC function disables CTRL/C and
prevents it from stopping a BASIC-11 program. The CTRLC function
enables the CTRL/C command.

The format of the functions are:
LET variable=RCTRLC
LET variable=CTRLC
where:

variable is the target variable; it contains an undefined
value after the statement is executed.

After BASIC-11 executes the RCTRLC function, typing CTRL/C on the
terminal does not stop the program.

After BASIC-11 executes the CTRLC function, typing CTRL/C stops the
program. BASIC-11 does not save any CTRL/C that is typed while CTRL/C
is disabled. 1If the program encounters a CTRL/C function, and no
prior RCTRLC function is in effect, the CTRL/C function has no effect.

UTILITY FUNCTIONS

When BASIC-11 prints the READY message, it automatically enables the
CTRL/C command.

For example:

LISTNH

1999 REM DO NOT ALLOW INTERRUPTS

1019 A=RCTRLC

1929 PRINT "NO INTERRUPTS"

1930 FOR I= 1 to 1006 \ S=S+I \ NEXT I
1199 REM NOW ALLOW INTERRUPTS

1119 A=CTRLC

1120 PRINT "INTERRUPTS OKAY"

1139 FOR I = 1 to 1000 \ S=S+I \ NEXT I
32767 END

READY
RUNNH

NO INTERRUPTS
<CTRL/C>
INTERRUPTS OKAY
<CTRL/C>
STOP AT LINE 1130
READY
For information on a system function that determines if CTRL/C has
been typed while CTRL/C is disabled, see Section 3.6.3.
NOTE
Once CTRL/C 1is disabled it 1is not)
possible to interrupt BASIC-11. Do not

disable CTRL/C until vyour program is
debugged.

3.5 TERMINATING YOUR PROGRAM (ABORT FUNCTION)

If you want a program to delete itself from memory when it terminates,
use the ABORT function. The ABORT function is equivalent to an END
statement except that ABORT can optionally delete your program from
memory and change the program name to NONAME (equivalent to the SCR

command) .

The format of the ABORT function is:
LET variable=ABORT (expression)

where:

variable is the target variable; it contains an wundefined
value after the statement is executed.

Ak

UTILITY FUNCTIONS

expression determines if the program is to be deleted from
memory. If the expression equals @, BASIC-11 does
not delete the program. If the expression equals
1, BASIC-11 deletes the program.

Consider the following examples:

Delete from memory Do not delete when
when program completed program completed

LIST LIST

ABORT 21-JAN-83 14:52:45 ABORT 21-JAN-83 14:54:00

19 PRINT "123" 19 PRINT "123"

20 A=ABORT(1) 20 A=ABORT(0)

30 PRINT "456" 3@ PRINT "456"

READY READY

RUNNH RUNNH

123 123

READY READY

LIST LIST

NONAME 21-JAN-83 14:53:30 ABORT 21-JAN-83 14:54:30

19 PRINT "123"
20 A=ABORT (0)
READY 3¢ PRINT "456"

READY

3.6 SYSTEM FUNCTIONS
System functions perform system-dependent operations.

The formats of the system functions are:

[LET] variable= SYS (expressionl [,expression2])
where:
variable is the target variable.
expressionl determines the function to be performed.
expression2 is an optional argument used 1in some system

functions.

Table 3-1 summarizes the functions performed according to the
specified wvalue of expressionl. Any value of expressionl other than
those specified causes BASIC-11 to print the ?ARGUMENT ERROR (?ARG)
message.

UTILITY FUNCTIONS

Table 3-1
Summary of System Functions

Value of Function Performed
expressionl

1 Processes input one character at a time. Target
variable contains the ASCII value of the next
character typed at the terminal.

4 Terminates BASIC-11 and returns control to the system
monitor (equivalent to the BYE command).

6 Determines if CTRL/C has been typed while CTRL/C is
disabled by the RCTRLC function. Target variable
equals 1 if CTRL/C has been typed and equals @ 1if
CTRL/C has not been typed.

7 Enables or disables lowercase input from your
terminal. If expression2 equals @, 1lowercase
character input is allowed. If expression2 equals 1,
lowercase character input 1is <converted to the
equivalent uppercase character input.

3.6.1 Single Character Input

Use the single character input system function, §SY5(1), to process
input one character at a time.

SYS(1) returns the seven-bit ASCII value of any character typed on the
terminal except CTRL/C (see the BASIC-11 Language Reference Manual for
a list of the ASCII values). If CTRL/C 1is typed when BASIC-11 is
executing SYS(l) and CTRL/C is enabled, then BASIC-11 prints the STOP
and READY messages. If CTRL/C is disabled, then BASIC-11 continues
executing SYS (1) and waits for another character.

LISTNH

1¢ PRINT "TYPE A CHARACTER: ";

20 A=SYS(1l)

4¢ PRINT "THE ASCII VALUE OF ";CHRS$(A);" IS";A
READY

RUNNH

TYPE A CHARACTER: 2
THE ASCII VALUE OF Z IS 90

READY

AL

UTILITY FUNCTIONS

3.6.2 Terminating BASIC-11

To terminate BASIC-11 from a BASIC-11 program, use system function
SYS(4). It is equivalent in effect to the BYE Command.

For example:

LISTNH
19 PRINT "GOODBYE"
20 A=SYS(4)

READY
RUNNH
GOODBYE

3.6.3 Checking for CTRL/C

If you have disabled CTRL/C with the RCTRLC function and want to check
if CTRL/C has been typed, use system function SYS(6). The function
returns a 1 if CTRL/C has been typed and a § if it has not been typed.

For example:

LISTNH

19 A=RCTRLC \ REM Disable CTRL/C.
3¢ B=SYS(6) \ REM Check for CTRL/C.
49 IF B=1 THEN 100

5¢ PRINT "STILL EXECUTING"

60 GO TO 30

109 PRINT "PROGRAM TERMINATING"

119 A=CTRLC \ REM Reenable CTRL/C.
120 A=ABORT(1)

READY
RUNNH

STILL EXECUTING
STILL EXECUTING
<CTRL/C><CTRL/C>
STILL EXECUTING
PROGRAM TERMINATING

READY

3.6.4 Enabling Lowercase Support

If you want to enter lowercase characters at your terminal, use the
system function SYS(7,expr2). The RT-11 operating system usually
converts all lowercase alphabetic characters to uppercase. Executing
the function SYS(7,0@) causes RT-11 to stop converting lowercase
characters and to pass them wunchanged. To cause RT-11 to resume
converting lowercase characters, you must execute the function
SYS(7,1). After you exit from BASIC-11, the monitor continues to
process characters as it did before BASIC-11 was active.

UTILITY FUNCTIONS

The following example demonstrates how to enable and disable
lowercase. The program is first run to enable lowercase by causing
the function SYS(7%,0%) to be executed. The program is then modified
to allow the user to enter a lowercase response. Finally, the
modified form of the program is run; this disables lowercase. The
modified program is then saved.

LISTNH

10 REM PROGRAM TO CHANGE LOWER CASE CONVERSION

2@ PRINT "DO YOU WANT TO ENTER LOWER CASE CHARACTERS (Y OR N)";
30 INPUT AS

49 IF AS$="Y" THEN 100

50 IF AS<>"N" THEN 20

60 A=SYS(7%,1%) \ REM DISABLE LOWER CASE

78 GO TO 32767

100 A=SYS(7%,0%) \ REM ENABLE LOWER CASE

32767 END

READY
RUNNH

DO YOU WANT TO ENTER LOWER CASE CHARACTERS (Y OR N)? Y

READY .

45 if a$="y" then 100 \ rem Check for lower case y

sub 50 @2@0@if a$<>"n"™ then 26 \ Rem Check for lower case n

5¢ IF AS<>"N" THEN if a$<>"n" then 20 \ Rem Check for lower case n

READY

listnh

19 REM PROGRAM TO CHANGE LOWER CASE CONVERSION

2¢0 PRINT "DO YOU WANT TO ENTER LOWER CASE CHARACTERS (Y OR N)";
3¢ INPUT AS

49 IF AS="Y" THEN 100

45 IF AS="y" THEN 100 \ REM Check for lower case y

50 if a$<>"n" THEN IF Aa$<>"n" THEN 20 \ REM Check for lower case n
60 A=SYS(7%,1%) \ REM DISABLE LOWER CASE

70 GO TO 32767

100 A=SYS(7%,0%) \ REM ENABLE LOWER CASE

32767 END

READY
runnh

DO YOU WANT TO ENTER LOWER CASE CHARACTERS (Y OR N)? n

READY
SAVE LOWCHM

READY

If you type lowercase letters when lowercase is disabled, they are
echoed as uppercase.)

Note that BASIC-11 converts lowercase keywords and variable names to
uppercase characters but leaves string constants, strings entered at
the terminal, and remarks unchanged.

CHAPTER 4

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

4.1 INTRODUCTION TO ASSEMBLY LANGUAGE ROUTINES

BASIC-11 allows you to add assembly language routines (ALRs) to expand

or extend BASIC-11's capabilities. For example, you can write
routines to communicate with special devices (such as 1laboratory
equipment) or to manipulate arrays. Once added to BASIC-11, such

routines can be executed in immediate mode or in programs, by means of
the CALL statement (see the BASIC-11 Language Reference Manual). The
advantages to programming in both BASIC-11 and assembly language
rather than programming in just assembly language are listed below.

e Only the programmer writing the routine has to know assembly
language. The application programmers only have to know
BASIC-11.

e It is easier to write, debug, and modify BASIC-11 programs.
You can write, execute, debug, and modify your program without
leaving BASIC-11,.

e You <can execute ALRs without writing a program, using
immediate mode CALL statements.

NOTE
This chapter assumes that you are an
experienced MACRO-11 programmer and that
you are familiar with your operating
system and its utility programs
(editors, MACRO-11 assembler, task
builders, linkers, and so forth).

This chapter describes:
e ALR format.
e The procedure to access arguments.
e Use of auxiliary routines provided by BASIC-11.

See the BASIC-11/RT-11 Installation Guide and Release Notes for the
procedure to add the routines to BASIC-11.

ALRs that wuse the FORTRAN IV call interface (as defined in
RT-11/RSTS/E FORTRAN IV User's Guide) can be called from either
FORTRAN IV or RT-11 BASIC-11. However, these ALRs must not access any
routines or global locations in FORTRAN IV itself.

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

4.2 FORMAT OF THE ASSEMBLY LANGUAGE ROUTINE

To write an assembly language routine (ALR) that you <can add to
BASIC-11, you first must specify the name of the routine and its
starting address in the user routine name table (see Figure 4-1). You
must 1include a ©pointer for each ALR after the global location FTBL.
Each pointer specifies the location of the routine name and starting
address. A word containing all zeros terminates the pointer list.

NOTE

ALR names must not contain embedded
blanks. For compatibility with FORTRAN
IV, routine names longer than six ASCII
characters should be avoided (although
BASIC-11 imposes no length restriction
other than the limit of the program line

size).
Routine Name User Routine Name Table
1st character Number of characters . R .
' X ~ Pointer to 1st routine name FTBL
of routine name in routine name
3rd character 2nd character of Pointer to 2nd K
. . ointer to 2n
of routine name routine name routine name
W Pointer to 3rd routine name
Last character of LT
0 if needed [.
routine name
Pointer to starting address of routine

Pointer to last routine name

0

Figure 4-1 User Routine Name Table and Routine Name Formats

The BASIC-11 software kit includes a file BSCLI.MAC, with global
location FTBL. This file is the basis of the pointer table. You
build the pointer table by adding entries between global location FTBL
and the .WORD @ entry, using the system editor.

Normally, placing the ALR's routine name at the beginning of the
routine is recommended. 1In this case the pointers in the user routine
name table should be globals. For example, if you have written three
routines named INITIT, ADDER, and CHKSTA, the routine name list should
be:

.GLOBL FTABI .
-.GLOBL INITNM, ADDNM, CHEKSNM
FTABI: -WORD FTBL
FTBL:" .WORD INITNM ;User routine
.WORD ADDNM :Name list
-WORD CHKSNM
.WORD [4]
. END

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

NOTE

You should edit the items printed in red
in this listing into the file BSCLI.MAC.
The items printed in black are already
in the file.

The locations, INITNM, ADDNM, and CHKNM should be at the beginning of
the INITIT, ADDER, and CHCKST, respectively. For example:
H The INIT routine

.GLOBL INITNM
INITNM: .BYTE 6 ;Number of characters in name

.ASCII "INITIT"

. EVEN

.WORD INITST
INITST: :Start of routine
An alternative method is to add the routine name and starting address
after the routine name table. In this case the starting addresses of
the routines should be globals. Using the same examples as above, the

routine name table should be:

.GLOBL FTABI
-.GLOBL INITST, ADDST, CHKSST
FTABI: -WORD FTBL
FTBL: -WORD INITNM
- WORD ADDNM
- WORD CHKSNM
-.WORD]
INITNM: .BYTE 6 :Number of characters in name
JASCIT "INITIT"®
. EVEN
-WORD INITST
ADDNM .BYTE 5
LASCII "ADDER"
. EVEN
-WORD ADDST
CHKSNM : .BYTE 6
JASCII "CHKSTA"
. EVEN
-WORD CHKSST
. END

Each ALR should start with the global address specified.

; THE INITIT ROUTINE
.GLOBL INITST
INITST: ;Start of routine

You should use this alternative method when you are adding an
written for FORTRAN IV to BASIC-11.

For example:

ALR

e

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

All the examples in this chapter use the recommended method (where the
routine name packet is at the start of the routine).

Once you have defined the name and starting address of the routine,
you can write the routine itself. The ALR can use the stack but it
must ensure that the stack limit is not exceeded. BASIC-11 puts the
stack 1limit in R4 before transferring control to the ALR. If you use
any of the mathematical operations or function routines provided by
BASIC-11, ensure that enough free space is available on the stack
before executing the routine (15 free words for single-precision
routines and 3@ free words for double-precision routines). The ALR
must end with an RTS PC instruction with the stack unchanged from its
original state. The format of the INITIT routine is:

; The INIT routine
.GLOBL INITNM
INITNM: BYTE 6
+.ASCII "INITIT"
- EVEN
-WORD INITST
INITST: ;Start of routine

Main body of routine

Ne Se We wo W we we

RTS PC ;End of routine

4.3 ACCESSING THE ARGUMENTS - THE ARGUMENT LISTS

When BASIC-11 executes the CALL statement, it evaluates the arguments
and provides the routine with two lists. One contains pointers to the
evaluated arguments and the other contains descriptors of the argument
types. An assembly language routine (ALR) should ensure that the list
contains the expected number and the right type of arguments.

Argument checking ensures that errors in a BASIC-11 program will not
cause a fatal error in the ALR or in BASIC-11 itself. If no argument
checking is done and a CALL statement contains an incorrect data type,
the ALR produces unpredictable results. For example, if the ALR
expects an integer array and the CALL statement contains a string
expression, the ALR could overwrite sections of the stack. If the ALR
checks arguments for errors, it can protect itself from errors 1in
BASIC-11 programs. (There 1s no protection from errors in the ALR
itself.)
1

A FORTRAN IV-compatible ALR cannot check arguments wunless it first
checks and determines that the 1language calling it is BASIC-11,
because FORTRAN IV does not provide an argument descriptor list.

Before BASIC-11 transfers control to the ALR, it evaluates the
arguments in the CALL statement. It creates a list of pointers to the
arguments and a list of argument descriptors. Figure 4-2 shows the
argument descriptor 1lists that BASIC-11 creates before it transfers
control to the ALR.

LL

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

Argument Descriptor List

Descriptor of 1st argument Pointer to descriptor List

1
Number of Arguments 4——’7 Pointer to List J R5

N SN S Pointer to 1st argument

Descriptor of last argument

Descriptor of 2nd argument ID Byte

Pointer to 2nd argument

Argument

B N N N Pointer
/\/\/\/\/\/\/\/ List

l Pointer to last argument

Figure 4-2 Assembly Language Routine Argument Lists

As shown in Figure 4-2, R5 points to a word that specifies the number
of arguments in the CALL statement and identifies the language calling
the ALR. The argument pointer list starts at the next word and the
pointer to the argument descriptor 1list is stored in the previous
word. .

Each byte of the word pointed to by R5 is meaningful. The low-order
byte contains the number of arguments. The high-order byte identifies
the language. If the calling language 1is BASIC-11, the high-order
byte has a value of 2¢2. If the calling language is FORTRAN IV, the
high-order byte has a value of #.

The pointers in the argument pointer list specify the location of the
evaluated arguments. There are two exceptions, pointers for null
arguments and pointers for string array arguments.

If an argument is null then its pointer does not point to that
argument but instead contains a value of -1. A CALL statement
argument list with two adjacent commas or a terminating command
produces a null argument. For example, CALL "INITIT" (A, B,, D,)
produces the following arguments: A, B, null, D, and null.

Tf the argument is a string array, then the pointer does not point to
that argument but instead contains a value needed to access the string
array (see Section 4.3.2). If the argument is an unsubscripted string
or an element of a string array, the pointer specifies the location of
the first character of the string.

The argument descriptor list specifies the data type of each argument.
It also indicates whether the argument is an array or not and whether
the ALR can return a result in the argument.

BASIC-11 provides additional information for strings and arrays. In
these cases the word in the argument descriptor list is a pointer to
the descriptor word, which has the additional information after it.
Figure 4-3 describes the format of the descriptor word. BASIC-11
indicates if a word in the list is a pointer or a descriptor word by
the value of the g bit. 1If the @ bit is clear, then the word in the
descriptor list is a pointer. If the ¢ bit is set, then the word in
the descriptor list is the descriptor word. Note that the descriptor
word for strings and arrays has a value of # in the @ bit.

NOTE

All numbers in this chapter that specify
the contents of a word or a section of a
word are octal numbers.

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

l15|14 13\ [12111'1019]8] ’6’5|4 3|2I1J
T .
Array Size of Read Data Type More Than
Data Type Only One Word
Descriptor
Contents of Contents of Contents of
Argument Type Bits 15-13 Argument Type Bit 7 Argument Type Bit0
Single value 0 Variable 0 Numeric Scalar 1
Array 1 Expression 1 Numeric Array 0
(Read Only)
Null 0 String Scalar 0
Null 1
String Array 0
Null 1
Contents of Contents of
Argument Type Bits 12-8 Argument Type Bits 6-1
Integer 2 Integer 11
Single Precision 4 Single Precision 20
Floating Paint Floating Point
Number Number
Double Precision 10 Double Precision 21
Floating Point Floating Point
Number Number
String 2 String 40
Null Argument 0 Null Argument 77

Figure 4-3 Format of the Argument Descriptor Word

The ALR can return arguments only to variables and arrays. If the
argument 1is an expression, constant, or element of a virtual array,
the seventh bit of the argument descriptor word is set and the ALR
must not return a value to that argument. -

Bits 12 through 8 of the argument descriptor word specify the size of
the data type. The ALR does not need to check this information
because each argument type -- specified in bits 6 through 1 -- has a
fixed size. The contents of bits 12 through 8 for a string argument
can be ignored.

BASIC-11" provides additional information for array and string
arguments. BASIC-11 specifies the total number of bytes in the array,
the number of subscripts, the high limit of the first subscript, and
the high 1limit of the second subscript if there are two subscripts.
BASIC-11 also provides a string reference pointer for string
arguments. This pointer is used by routines provided by BASIC-11 to
access the string arguments. See Section 4.3.2 for a description of
these routines,. Figure 4-4 describes the format of array and string
descriptors.

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

.
Descriptor Word
0
- Argument Descriptor List
Array Size (bytes)
Descriptor-word for numeric scalar
Array 0 Number of Subscripts
Descriptor ﬁ 0 Descriptor word for numeric scalar
Pointer to array descriptor
High limit of 1st subscript
Descriptor word for numeric scalar
0 If there
are two Pointer to string scalar descriptor
L High limit of 2nd subscript subscripts
Descriptor word for numeric scalar
. Descriptor word /
String P
Descriptor N .
P String reference pointer

Figure 4-4 Format of Array and String Argument Descriptors

4.3.1 Numeric Arrays

If the CALL statement specifies an element of a numeric array, for
example, A (14), BASIC-11 considers it a one-dimensional array
starting with the specified element and ending with the 1last element
of the array. BASIC-11 considers it a one-dimensional array even if
the entire array is two-dimensional.

BASIC-11 and FORTRAN IV store arrays differently. BASIC-11 array
subscripts start at @, but FORTRAN IV array subscripts start at 1. 1In
BASIC-11 arrays, the second subscript varies faster, but in FORTRAN IV
arrays the first subscript varies faster. If you are designing a
routine to be called from either BASIC-11 or FORTRAN IV, you must
consider these differences in the ALR.

4.3.2 Strings and String Arrays

This section describes the routines BASIC-11 provides to allow the
assembly language routine (ALR) to access strings. It also describes
some example routines which use these string access routines.
BASIC-11 allows dynamic-length strings, whose length can change during
program execution. The BASIC-11 string access routines keep track of
the 1location and size of strings. Consequently, an ALR cannot change
a BASIC-11 string without using the string access routines.

The procedures for accessing strings and for accessing elements of
string arrays are different. Note that if the CALL statement
specifies an element of a string array (for example, A$(10)), BASIC-11
considers it a string scalar. Only if the entire array is passed (for
example, AS$()), does BASIC-11 consider it a string array.

AL

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

The ALR must locate and retrieve the string reference pointer word and
pass it to the string access routines. For a string argument, the
string reference pointer is the word following the descriptor word.
For a string array argument, The ALR must calculate the string
reference pointer to access any element of the array. The string
reference pointer is a word whose value is determined by the following
formula:

string reference pointer=2*offset+argument pointer

where: offset is the position of the element in the
array.
argument pointer is the value for the string array in the

list of argument pointers. (Note that
the argument pointer for a string array
does not point to the argument itself.)

The offset for an element of a one-dimensional array is equal to the
value of its subscript. The offset for an element of a
two-dimensional array is defined by this formula:

offset=subscriptl* (maximum value of subscript2+l)+subscript2
For example, consider two arrays -- AS$(19) and B$(3,5) —-- with

argument pointers of A and B, respectively. NOTE: All numbers in the
following list are decimal.

Element 2*offset+argument pointer string reference pointer
AS(8) 2*@+A A
AS (4) 2*%4+A 8+A
BS$(4,5) 2* (*6+5)+B 10+B
BS(1,5) 2% (1*6+5)+B 224B
BS(2,0) 2% (2*6+0)+B 24+B

The string access routines use the string reference pointer that the
ALR provides to find and manipulate the string.

BASIC-11 provides four string access routines:

$FIND
SALC
$STORE
SDEALC

The SFIND routine returns the length of a string and a pointer to the
first character. The SALC routine allocates a temporary string. An
ALR can only write characters directly to strings created by SALC.
The $STORE routine assigns the value of one string to a second string
and changes the first string to a null string. The SDEALC routine
deallocates space used by the temporary string on the stack.

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

The ALR should use the following general procedure to manipulate a
string argument and then return the resultant string. First, the ALR
accesses the string argument by using the S$FIND routine. Then it
creates a temporary string with the $ALC routine. It then reads the
characters of the string argument, manipulates them in the desired
way, and writes the characters out to the temporary string. After
this the ALR uses the $STORE routine to copy the temporary string to a
string argument, which can be the original string. Finally, it uses
the S$DEALC routine to remove data placed on the stack by the $ALC
routine.

Table 4-1, "Using String Access Routines", describes the four string
access routines. The table describes the initial setup, including the
format of the subroutine jump (JSR) instruction required to invoke the
string access routine. It also describes the expected results and how
to interpret them, that is, it indicates how to determine whether or
not you made a correct initial setup in preparation for the string
access routine.

If the ALR calls $FIND, ALC, SSSTORE, and $ALC, it must specify them
as global locations.

Before calling any of these routines, you must ensure that R5 contains
its 1initial value, the value it had when BASIC-11 transferred control
to the ALR. That is, R5 must point to the word identifying BASIC-11
and specifying the number of arguments.

NOTE

These routines require that a register
contain the same value in bits 6-1 as an
argument descriptor word for a string
argument. You can ensure this by moving
a value of 10# 1into the specified
register (puts a value of 44 in bits
6-1) or by moving an argument descriptor
word in the specifed register.

4.4 USING ROUTINES PROVIDED BY BASIC-11

BASIC-11 provides routines that handle error conditions, print
messages on the terminal, and perform mathematical operations and
functions.

4.4.1 Error Handling and Message Routines

BASIC-11 provides two error handling routines, $ARGER and $BOMB, and
two message printing routines, $MSG and $CHROT. The $ARGER routine
produces the fatal ?ARGUMENT ERROR (?ARG) message. The ALR should
call S$ARGER when it detects an incorrect argument. The $BOMB routine
allows the ALR to specify its own fatal message. The $MSG routine
prints any message on the terminal and then returns control to the
ALR. The SCHROT routine prints any single character on the terminal
and then returns control to the ALR.

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

*Spus IV 9yl 91033q DIVIAAS Aq peaowsli g 3Isnuw DIYS AQ pejesido buriizs Aierodwsl Auy

3oe3s
T = 319-D
psbueyoun gy‘py’ed’gy’ Ty

enTea Ter3lTuUT
1091100 UTR3UOD 30U PIP GY ‘Z=@d J1I
g@1 Tenbs 30u pIp ZY ‘T=pd 3IT
19pOd 10113 SUTRIUOD @Y

T = 319-D
pabueyoun qy’‘pu‘ey’zy’ Td

anfea [er3tur
3091100 UTE3UOD 30U PIP G ‘Z=g¥ IT
g@T tenba jou pip Y ‘T=@4 IT
$9pPOd 10112 SUTIR3UOD @Y

. T = 319-D
pabueyoun gy‘py‘ey

anTeA TEI3TUT
3091100 UTB3UOD 30U PIP GY ‘Z=p¥ JT
g@T Tenbs jou prp TY ‘T=p¥ 3T
puti3s peoisenbai 103 soeds 2913
JUSTOTJIINSUT S93eDIPUT ‘g=¢Yd JT
$9poOd I1011° sutrejuod gy

T = 319-D
pabueyosoun gy‘py‘cy

anfeA TeI3TIUI 3091100
urejuod 30U PIP S ‘Z=Q¥ 3IT
p@1 Tenbs 3jou pIip T8 ‘T=pY 3IT
HODOO 10112 sutejuod gy

paTTedo sem

O7IVS @1039q poa3sIxXd eyl
®3e3s 3yl 031 uinial 3oe3S
g = 319-D
pabueyoun S¥’pyd‘ e’y T8 gd

putiiys i1ayjzo ayz
JO enTeA IawWIOJ sSuUTeljuUoD TV
utr sem i1sjutod ssoym bBurtiazs

TTOU ST gy
utr sem i1sjutod ssoym butials
g = 319-D

psbueyoun Gy’py‘ed’zd’ TU vy

auT3InNoI DIVIAAS

2yl Ag 3oe3s ayj woiJ spiom

9S8yl sAaouway .muwucﬁOQ Teuxsjurt
JO SpioMm TeRI®ASS SUTRJUOD O3S
1s3utod sdus193a1 burtilis = dgg
(p=T¥) butriis [(nuU e JT T = 319-2
(1eyd) g = 319-D
pabueyoun Gu’py’ ey

28T = 24
putri3s Jo yzbusl = TY
I930e1RYD

buti3ls 3saty Jo ssaippe = gy

(p=Td) butizs [inu e IT = 319-Z

(z1eyd) g = 319-0

pabueyoun Gy’‘py‘ey

peT = 2o

butizs Jo yabusT = TV
I930eIRYD

butias 3sa1J JOo ssaippe = gy

01YdA$ ‘O0d ¥YSC :93noaxd
sniea TeI3TUI->GY

PPT->2d

*dsS 8yl utr ST

1s3utod sousisial burilzs syl
3eyl seinsus SIY3 ‘faurinox
DIV¥$ 9y3 burrreo aours
joe3s ayl o3 pappe aaey nok
spiom Aue butaowsi Aq STyl
oQg *8ur3lnoi DJIVS buimorioz
ATejerpauwwl sem 3T 3eyly
23e3S 9yl 03 3de3ls uiniay

FUOLSS ‘Od dS[:83nosxy
antTea TeI3TuIl->Gqy
PPT->2d
butiys buraisdai jo
193utod sousisJsa burilzs->Ty
petdoo g 03 butalzs jJo
193utod sdouaiajai DbuiIils->gy

2T¥S ‘Od ¥SI{ :91noaxd
sniea TeI3TUT->GY

PRT->Td

yibus burtiais paatnbai->gy

QNIJ$ “Od ¥SC :83noaxy
anfTea TeI3TUI->GY
g0T->Td

as3utod
souaiajal burils->gy

x(2Ur13Nn01 DIVS Aq

psonpoiad siajurtod

Teulslul ay3l

}oels wolij aAowal)
oIvads

(TTnu butias
3sI113 odew ‘burils
puooss e utl butias

e JO anyeA, 8103sS)
JHO0LSS

4-10

¢ (Puti3s
Aiezodwsy ajeoorye)
oA £5

(butaas

Jjo yabual pue
UOT3eD0T UIN3aI)
aNIds

po30939Q S1011Y Y3 TIM 3J[NSaY

pe?30939Q S1011g ON Y3 TM 3[nsay

dniss weiboig

aut3inoy

SaUT3IN0Y SS800yY burilgs bursn

-V s1qedl

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11
If the ALR calls SARGER, $SBOMB, $MSG, or $CHROT, it must specify them
as global locations.
Call the $ARGER routine by executing the instruction:
JMP S$ARGER

The S$ARGER routine prints the error message on the terminal in one of
the following formats:

?ARGUMENT ERROR AT LINE XXXXX
?ARG AT LINE XXXXX

where:

XXXXX is the line number of the CALL statement.
If the CALL statement was an immediate mode statement, then AT LINE
XXXXX 1is not printed. Control then returns to BASIC-1l, which prints

the READY message.

Call the SBOMB routine by executing the following instruction:

JSR R1,$BOMB
.ASCIZ "message’
. EVEN

where:

message is the string of characters that you wish to print.

The $BOMB routine prints the error message on the terminal in the
form:

?error message AT LINE xXXxX

where:

XXXXX is the line number of the CALL statement.

If the CALL statement was an immediate mode statement, then AT LINE
XxxXXX 1is not printed. Control then returns to BASIC-11, which prints

the READY message.

Call the $MSG routine by executing the instruction:

JSR R1,$MSG

.ASCII 'message'

.BYTE 15,12,0 ;Must have carriage return

. EVEN ;and line feed and end with @

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

where:
message is the string of characters that you wish to print.

The SMSG routine prints the message you specify on the terminal, and
then returns control to the instruction that follows the .EVEN
instruction.

Call the SCHROT routine as follows:

1. put the 8-bit ASCII code of the character in the 1low order
byte of R@

2. execute the instruction:
JSR PC,SCHROT

SCHROT prints the character specified in R@ on the terminal, and then
returns control to the ALR.

4.4.2 Mathematical Operation and Function Routines

Assembly language routines (ALRs) can use BASIC-11's mathematical
operation and function routine to perform operations and functions
that you can use in a BASIC-11 program. ALRs can use the same routine
that BASIC-11 uses to perform these operations and functions. An
advantage of this is that the ALR need not duplicate routines that
already exist in BASIC-11.

NOTE

Assembly language routines that use the
FP11l Floating Point unit are required to
save and restore the FPU status. If the
assembly language routine will modify
the FPU status, it must preserve the FPU
status on entry by executing the
following instruction:

STFPS -(SP)

and restore the status (prior to
returning to the <calling program) by
executing the instruction:

LDFPS (SP)+

Tables 4-2 and 4-3 describe the BASIC-11 mathematical operations and
functions. They show how each operation or function appears in the
BASIC-11 language, and name the BASIC-11 routine that performs it.
Note that <certain operations and functions require one routine for
single-precision arithmetic, a different routine®for double-precision
arithmetic, and yet another for integer arithmetic.

R

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

Table 4-2
BASIC-11 Mathematical Operations

Single- Double-
Operation Operator Meaning BASIC Precision Precision
Equivalent Routine Routine
Addition + Adds two floating- C=A + B $SADR $ADD
point numbers
Subtraction - Subtracts one floating- C=A - B $SBR $SBD
point number from
another
Multiplication * Multiplies two floating- C=A * B SMLR $MLD
point numbers
Multiplies two integers C%=A%*B% SMLI SMLI
Division / Divides one floating- C=A / B $SDVR $DVD
point number by
another
Divides one integer C%=A%/B% SDVI SDVI
by another integer
Exponentiation . Raises a floating- C=A "~ B XFF$ XDD$
point number by a
floating-point ex-
ponent.
Raises a floating- C=A B% XFI$ XDIS$
point number by an
integer exponent.
Raises an integer by C%=A%"B% XII$ XIIS
an integer exponent.
. Table 4-3
BASIC-11 Mathematical Functions
Single- Double-
Function Description BASIC Precision Precision
Equivalent Routine Routine
Data type Converts floating-point number By = A SRI $DI
conversion to integer
Converts integer to floating B = A% $IR $ID
Truncation Truncates a floating-point B=SGN (A) * SINTR SDINT
number to a floating-point INT (ABS (A))
whole number
Sine Finds the sine of a radian B=SIN(A) SIN DSIN
value
Cosine Finds the cosine of & B-COS (A) COoSs DCOS
radian value
Finds the arctangent in B=ATN (A) ATAN DATAN
radians of a number
Logarithm Finds the natural log B=LOG (A) ALOG DLOG
(base e) of a number
Finds the common log B=L0OG1Md (A) ALDG10@ DLOG1@
(base 18) of a number
Square root Finds the square root of B=SQR (A) SORT DSQRT
a number
Exponential Finds the value of e B=EXP (A) EXP DEXP

raised to a number

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

If you are running a BASIC-11 system designed for double-precision
arithmetic, either the single- or the double-precision routine names
can be used. Either routine name will execute the double-precision
routine; this fact allows vyou to use the same code for different
systems regardless of precision. However, you must still be aware of
which precision you are using, and ensure that the data manipulations
in the program properly reflect the BASIC-11 configuration on which
programs are running. To be compatible with FORTRAN IV you must use
only the double-precision routine names to execute the
double-precision routines.

All routines that have a dollar sign ($) in their name must be called
in threaded code mode. To call routines in threaded code mode, first
call a special subroutine, SPOLSH. After calling $POLSH, 1list the
names of the threaded code routines you wish to call. 1In threaded
code mode, each routine 1is executed in the order listed. All
arguments and results are passed on the stack. Finally, list the name
of a second special subroutine, SUNPOL, which ends threaded code mode.

You must specify SPOLSH, S$UNPOL and any routine names you specify as
globals.

The call to SPOLSH is in the following format:
JSR R4 ,$POLSH

Figure 4-5 describes the state of the stack before and after each
threaded code routine.

As examples, consider the following segments of routines:

Segment 1 divides an integer stored in TEMPl by an integer stored in
TEMP2 and stores the quotient in RESULT.

; Segment 1

.GLOBL $POLSH,SUNPOL,$DVI

MoV TEMP1 ,- (SP) ;Set up the

MOV TEMP2 ,-(SP) :stack

JSR R4 ,$POLSH ;Enter threaded code mode
.WORD $DVI ;Specify routine name
.WORD SUNPOL ;Leave threaded code mode
MOV (SP)+ ,RESULT ;Store result

TEMPl: .WORD
TEMP2 .WORD
RESULT .WORD

SIS RS

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

$
l

Equivalent
Routine BASIC Stack Before
Names Statement Execution
$ADR C=A+B 5 {[High-order FP word 'lsri;lt(er
$SBR C=A-B Low-order FP word p)
$MLR C=A*B A High-order FP word
$DVR C=A/B Low-order FP word
$ADD C=A+B High-order FP word S::::er
$SBD C=A-B B ‘ Low-order FP word P
. $MLD C=A*B I Lower-order FP word
$DVD C=A Lowest-order FP word
XDD$ C=A"B High-order FP word
A ‘ Low-order FP word
l Lower-order FP word
Lowest-order FP word
Stack
SMLI C%=A%+B% B% [Integer word p;ﬁwr
$DVI C%=A%/B% A% {Integer word
X1$ C%=A%"B%
k
XFI$ C-A"B% B% | Integer word Stéc
- pointer
A High-order word
Low-order FP word
~ I]
XDI$ C=A"B% B% | Integer word Szﬁter
High-order FP word P d
A s Low-order FP word
' Lower-order FP word
Lowest-order FP word
$RI B%=A o {[Fighorder 7P word S;E;r
Low-order FP word P
$DI B%=A Figh-order FP word Szﬁ;r
A ‘ Low-order FP word P
I Lower-order FP word
Lowest-order FP word
$IR B=A% A% | Integer word l—-{ StéCk
pointer
$ID B=A% A% [integer word Stack
pointer
SINTR B=SGN(A)+ Figh order FPword _Je oo
INT(ABS(A)) Low-order FP word pointer
S$DINT B=SGN(A)+ High-order FPword et oroer
INT(ABS(A)) A Low-order FP word pointer

Lower-order FP word

Lowest-order FP word

Note: FP stands for Floating Point

Figure 4-5

(9]
—

ot [tsgervord]

(9]
—

B% | Integer word '-u

B%

Stack After
Execution

High-order FP word

tack

Low-order FP word

pointer

Stack

High-order FP word

Low-order FP word

pointer’

Lower-order FP word

Lowest-order FP word

Stack.
pointer

High-order FP word

Stack

Low-order FP word

pointer

High-order FP word

Stack

Low-order FP word

pointer

Lower-order FP word

Lowest-order FP word

Integer word

Stack
pointer

Stack
pointer

High-order FP word

Stack
N
pointer

Low-order FP word

High-order FP word

Stack

Low-order FP word

pointer

Lower-order FP word

Lowest-order FP word

High-order FP word

Stack

Low-order FP word

pointer

High-order FP word

Stack

Low-order FP word

pointer

Lower-order FP word

Lowest-order FP word

State of Stack for Threaded Code Routines

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11
Segment 2 multiplies two single-precision floating-point numbers,
FLOATA and FLOATB, and stores the product in FLOATC.
;Segment 2

.GLOBL $POLSH,SUNPOL , SMLR

MOV FLOATA+2,-(SP) ; Put FLOATA

MOV FLOATA,- (SP) ;on stack ’
MOV FLOATB+2,-(SP) ;Put FLOATB

MOV FLOATB,—- (SP) ;on stack

JSR R4 ,$POLSH ;Enter threaded code mode

.WORD SMLR ;Specify routine name

.WORD SUNPOL ;Leave threaded code mode

MOV (SP)+,FLOATC ;Store result

MOV (SP)+,FLOATC+2 ;in FLOATC

FLOATA: .WORD
FLOATB: .WORD
FLOATC: .WORD

SIS
aw

14
14
14
Segment 3 converts a double-precision floating-point number stored at
FLOAT to an integer and stores it at INTMDW.

;Segment 3

.GLOBL $POLSH,$UNPOL,SDI

MOV FLOAT+6 ,—- (SP) ; Put FLOAT
MOV FLOAT+4 ,-(SP) ;on stack
MOV FLOAT+2,-(SP) ;Keep doing it
MOV FLOAT,- (SP) ;Done
JSR R4 ,$POLSH ;Enter threaded code mode
.WORD $D1I ;Specify routine name
.WORD SUNPOL ;Leave threaded code mode
MOV (SP) +, INTMDW ;Store result

FLOAT: .WORD 9,0,0,0

INTMDW: .WORD [7]

Although the foregoing examples have only one routine name after each
call to $POLSH, you can specify any number of routine names. You must
always follow the last of routine name with the $SUNPOL routine.

The sine, cosine, arctangent, logarithm, square root, and exponential
routines each use an argument list similar to the BASIC-11 CALL
argument list. An ALR must establish the argument list before calling
the routine. The format of the argument list for the single-precision
routines, SIN, COS, ATAN, ALOG, ALOGl@, SQRT, and EXP, is:

0 | 1 *-—lPointer to Iistl R5
High-order FP word Pointer to argument
Low-order FP word

Figure 4-6 Argument List for Supplied Single-Precision Routines

XL

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

The format of the argument list for the double-precision routines,
DSIN, DCOS, DATAN, DLOG, DLOG1l#, DSQRT, and DEXP is:

0 [1 t=—Pointer to list] R5
High-order FP word _j=—{Pointer to argument
Low-order FP word

Lower-order FP word
Lowest-order FP word

Figure 4-7 Argument List for Supplied Double-Precision Routines

In both cases, the routines are called by the instruction:
JSR PC, routine name

The single-precision routines return the result in R@ and RI1; the
high-order word is in R@ and the low-order word is in R1.

The double-precision routines return the result in R@#, R1, R2, and R3.
The high-order word is in R# and the low-, lower-, and lowest-order
words are in Rl1, R2, and R3, respectively.

You must specify as global any routine name that you call.

These routines do not preserve any registers.

NOTE

You should save the initial value of R5
before loading the pointer to the

argument for these routines. You will
need the saved value to execute any
threaded code routine to access

arguments.

Consider the following segment of a routine that finds the square root
of a single-precision floating-point number, NUMl, and stores the
result in NUM2:

;Segment which finds square root

.GLOBL SORT

MOV R5, TEMP5S ;Save old value of R5
MOV R1, TEMP1 ;Save any other register
MOV RO, TEMP@

MOV #ARG, R5 ;Set up RS

JSR PC, SORT ;Call routine

MOV RO, NUM2 ;Store high order result
MOV R1, NUM2+2 ;Store low order result
MOV TEMP5, R5 ;:Restore saved

MOV TEMP1l, Rl ;:Registers

MOV TEMP@, RO

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

ARG: .WORD

.WORD
TEMP5: .WORD
TEMPl1: .WORD
NUM1: .FLT2
NUM2: .FLT2

The following example is a complete assembly language

ST SESR-A g

routine. This

routine can be called by the following statement:

CALL HYPOT(A,B,C,C%)

The routine calculates

the value of the

expression SQR(A*A+B"2),

assigns the value to C, and assigns the truncated value to C%.

.TITLE HYPOT
.PSECT SUBRS,RO,I

.GLOBL
HYPTAB: .BYTE
.ASCII

- EVEN
.WORD

.GLOBL
.GLOBL

HYPOT: CMPB

BEQ
10$: JMP
20%: CMPB

BNE

MOV
SUB
CMP
BHIS
JSR
.ASCIZ
. EVEN
39$: MOV

JSR
BIC
CMP
BNE
JSR
BIC
CMP
BNE
JSR
BIC
CMP
BNE
JSR
BIC
CMP
BNE

HYPTAB
5
'"HYPOT'

HYPOT

$SARGER, $BOMB ,SPOLSH, SUNPOL
MLR,XFI,$ADR,SQRT,SRI

(R5)+,#4
208$

$SARGER
(R5)+,#202

60$

SP,R3
#30.,R3
R3,R4
30%
R1,$BOMB

'STACK OVERFLOW

-4 (R5) ,R4

PC,GETDSC
#160201,R3
#2040 ,R3
10$
PC,GETDSC
#160201,R3
#2040 ,R3
108
PC,GETDSC
#160001,R3
#2040 ,R3
198
PC,GETDSC
#160001 ,R3
#1022 ,R3
1gs

;Are there 4 arguments?

;Yes.

;No, issue argument error.

;Are we being called by BASIC-11

;with argument descriptors?

;No. -

;Yes, check that there is enough

;Stack space. 30. Bytes should be
;sufficient.

;Subtract 3¢. from the current SP value.

;Is it below the limit?
;No.

;Yes, issue message.

IN HYPOT'

;:Get the pointer to the first element
:in the argument descriptor list.

;Get the descriptor of the 1lst argument.
;Is it a 2 word real value?

;No.
;:Yes, get the descriptor of the 2nd argument.
:Is it also a 2 word real?

;No.
;Get the descriptor of the 3rd argument.
;Is it a 2 word real with writing allowed?

;No.,
;Get the descriptor of the 4th argument.

;Is it an integer with writing allowed?
;No.

4-18

e S

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC-11

60S: MOV (R5)+,R3 ;Push the 1st argument on the stack.

MOV 2(R3) ,—-(SP) ;NOTE: Low order is pushed first.

MOV (R3) ,—- (SP)

MOV 2(R3) ,~-(sP) ;Push it again because we will do

MOV (R3) ,-(SP) ;A*A to get A"2.

JSR R4 ,$POLSH

$MLR ;Do the multiply.

SUNPOL

MOV (R5)+,R3 ;Push the 2nd argument.

MOV 2(R3) ,-(SP)

MOV (R3) ,—(sP) .

MOV #2,-(SP) ;Push a 2 because we will use real
;to integer exponentiation.

JSR R4 ,$POLSH

XF1$;Square the 2nd argument.

SADR ;Add square of 2nd argument to square
;0of first argument.

SUNPOL
;Now create on the stack the arguments
;required by SQRT.

MOV R5,-(SP) ;Save R5.

MOV SP,R5 ;Create pointer to value on the stack.

TST (RS5) +

MOV R5,-(SP)

MOV #1,-(SP) ;Show only 1 argument to SQRT

MOV SP,R5

JSR PC,SQRT ;Get the square root.

CMP (SP)+,(SP)+ ;Remove old arguments from the stack.

MOV (SP)+,R5 :Restore R5.

MOV (R5)+,R3 ;Point to the 3rd argument.

MOV RO, (R3)+ ;Store the real result in the

MOV R1, (R3) ;3rd argument.
:NOTE: SQRT returned its result in R & R1l.

MOV R1,2(SP) ;Replace the sum of the squares

MOV RO, (SP) ;with its square root.

JSR R4 ,SPOLSH

SRI ;Convert to an integer.

SUNPOL

MOV (SP)+,@(R5)+ ;Store the integer result in
;the 4th argument.

RTS PC ;Return to the caller.

;GETDSC Returns the next argument's descriptor word.

Inputs:
R4 points to the word in the descriptor list.

Se =

Outputs:
R3 contains the descriptor word for the current argument.
R4 is updated to point to the next element in the list.

w0 weo o

GETDSC: MOV (R4)+,R3 ;Get the descriptor.

BIT #1,R3 ;Is it a pointer?

BNE 10$;No.

MoV (R3) ,R3 ;Yes, get the actual descriptor.
10$: RTS PC

. END

SR

I

ABORT function, 3-4

$ALC routine, 4-8, 4-9, 4-10

ALR, advantages of, 4-1
ALR format, 4-2

ALR, FORTRAN-compatible, 4
SARGER routine, 4-9
Argument checking, 4-4
Argument descriptor list,
Argument descriptor word,
Argument list, 4-4, 4-5

Argument list, double-precision,

4-16

-4

4-4
4-6

INDEX

Data type, 4-5

SDEALC routine, 4-8, 4-9,

Default device, 2-2
Default file name,
Default file type,
DEL key, vi

2-2
2-2

Descriptor list, argument, 4-4

Descriptor, string argument,

Device, default, 2-2
Device names, 2-1
DIRECTORY command, 2-4
Disabling CTRL/C, 3-3

Argument list, single-precision,

4-16
Argument pointer, 4-8
Argument pointer list, 4-4
Array, numeric, 4-7
Arrays, string, 4-7

Assembly language routine, 4-1

FORTRAN-compatible, 4-4

.BAC file type, 1-8
Background Jjob, 1-2
BASIC software kit, 4-2
BASIC termination, 3-6
.BAX file type, 1-8
$SBOMB routine, 4-9, 4-11
BYE command, 1-7

CALL statement, 4-1, 4-4
Canceling CTRL/O, 3-2
Checking for CTRL/C, 3-7
$SCHROT routine, 4-9, 4-11
Commands

BYE, 1-7

CTRL/C, 1-6

CTRL/F, 1-4

DIRECTORY, 2-4

FRUN, 1-4

RUN, 1-3
CTRL/C checking, 3-7
CTRL/C command, 1-
CTRL/C disabling,
CTRLC function, 3-
CTRL/F command, 1-
CTRL key, vi
CTRL/0, canceling, 3-2

6
3-3
3

4

Enabling lowercase, 3-7

Error handling routines, 4-9

Error messages, 1-8
ESC key, vi

File directory listing,
File name, default, 2-2
File specification, 2-1
File type, default, 2-2

SFIND routine, 4-8, 4-9,
Floating-point precision, 1-7

Foreground job, 1-4

FRUN command, 1-4

Functions
ABORT, 3-4
CTRLC, 3-3
optional, 1-
RCTRLC, 3-3
RCTRLO, 3-2
SYs, 3-5
TTYSET, 3-1

2

Global address, 4-3

Indirect file, 1-5

LET statement, 3-1

2-4

4-10

Link time feature selection,

1-1

Lowercase characters, 3-7

Index-1

4-10

o

Mathematical routines, 4-11,
4-12, 4-13

Message routines, 4-9

$MSG routine, 4-9, 4-11

Name table, user routine, 4-2
Numeric arrays, 4-7

Offset, 4-8
OPEN statement, 2-3
Optional features, 1-1

Pointer, argument, 4-8

Pointer list, argument, 4-4

Pointer, string reference,
4-6, 4-8

SPOLSH routine, 4-14

Precision, floating-point, 1-7,
4-16

Program termination, 3-4

RCTRLC function, 3
RCTRLO function, 3
RET key, vi
Routines
SALC, 4-8, 4-9, 4-10
$ARGER, 4-9
SBOMB, 4-9,
SCHROT, 4-9, 4-11
SDEALC, 4-8, 4-9, 4-190
SFIND, 4-8, 4-9, 4-10
SMSG, 4-9, 4-11
$POLSH, 4-14
SSTORE, 4-8, 4-9, 4-10
SUNPOL, 4-14
assembly language, 4-1
error handling, 4-9

-3
-2

4-11

mathematical, 4-11, 4-12, 4-13

message, 4-9
string access, 4-8, 4-9, 4-1¢
threaded code, 4-12, 4-14

INDEX

Routine name, 4-2
RUN command, 1-3
Run-time feature selection, 1-1

Single character input, 3-6
Single Jjob monitor, 1-2
Software kit, BASIC, 4-2
Stack limit, 4-4
Starting address, routine, 4-3
Starting BASIC, 1-2
Statements

CALL, 4-1, 4-4

LET, 3-1

OPEN, 2-3
Stopping BASIC programs, 1l-
$STORE routine, 4-8, 4-9, 4
String access routines, 4-8,

4-9, 4-10

String argument descriptor,
String arrays, 4-7
String reference pointer, 4-6
SYS functions, 3-5
System functions, 3-5

6
-1

Terminal margin setting, 3-1

Terminating BASIC, 3-6

Terminating the program, 3-4

Threaded code routine, 4-12,
4-14

TTYSET function, 3-1

SUNPOL routine, 4-14
User routine name table, 4-2
Utility functions, 3-1

Wildcard feature, 2-4
Word, argument descriptor,
4-6

Index-2

HOW TO ORDER
ADDITIONAL DOCUMENTATION

From

Call

Write

Chicago

312-640-5612
8:15 AM. to 5:00 PMm. CT

Digital Equipment Corporation
Accessories & Supplies Center
1050 East Remington Road
Schaumburg, IL 60195

San Francisco

Alaska, Hawaii

or

408-734-4915
8:15AM. to 5:00 P M. PT

6038846660
8:30 AM. to 6:00 PM. ET

408-734-4915
8:15 AMm. to 5:00 P.M. PT

Digital Equipment Corporation
Accessories & Supplies Center
632 Caribbean Drive
Sunnyvale, CA 94086

New Hampshire

Rest of U.S.A.,
Puerto Rico*

603—884-6660
8:30 AM. t0 6:00 PM. ET

1-800-258-1710
8:30 AM. t0o 6:00 P.M. ET

Digital Equipment Corporation
Accessories & Supplies Center
P.O. Box CS2008

Nashua, NH 03061

*Prepaid orders from Puerto Rico must be placed with the local DIGITAL subsidiary (call 809—754-7575)

Canada
British Columbia

Ottawa—Hull

Elsewhere

1-800-267-6146
8:00 AMm. t0 5:00 P.M. ET

613-234-7726
8:00 AM.t0 5:00 .M. ET

112-800-267-6146
8:00 Am. to 5:00 PM. ET

Digital Equipment of Canada Ltd
940 Belfast Road

Ottawa, Ontario K1G 4C2
Attn: A&SG Business Manager

Elsewhere

Digital Equipment Corporation
A&SG Business Manager”

*c/o DIGITAL's local subsidiary or approved distributor

BASIC-11/RT-11
User’s Guide
AA-5071B-TC

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

— Assembly language programmer

— Higher-level language programmer

— Occasional programmer (experienced)

— User with little programming experience
— Student programmer
— Other (please specify)

Name Date

Organization Telephone

Street

City State Zip Code

or Country

— Do Not Tear — Fold Here and Tape

dlilgliltiall

—_ Do Not Tear — Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG/ML PUBLICATIONS, MLO5-5/E45
DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET

MAYNARD, MA 01754

No Postage
Necessary
if Mailed in the
United States

Cut Along Dotted Line

