RT-11
Advanced
Programmer’s Guide

Order No. AA-5280B-TC

dlilgliltlall

November 1978

This manual is a reference document for advanced RT-11 users,
including FORTRAN-1V users and MACRO-11 assembly
language programmers.

RT-11
Advanced
Programmer’s Guide

Order No. AA-5280B-TC

SUPERSESSION/UPDATE INFORMATION: This manual supersedes DEC-11-ORAPA-A-D. This
manual includes Update Notice No. 1 (AD-5280B-T1),
Update Notice No. 2 (AD-5280B-T2), and Update
Notice No. 3 (AD-5280B-T3).

OPERATING SYSTEM AND VERSION: RT-11 V03B

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, October 1977
Revised: March 1978
July 1978

September 1978

November 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license

and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright () 1977, 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS

CONTENTS

PREFACE
CHAPTER 1 I/0 PROGRAMMING CONVENTIONS

MONITOR SOFTWARE COMPONENTS
1 Resident Monitor (RMON)
2 Keyboard Monitor (KMON)
3 User Service Routine (USR)
4 Device Handlers
GENERAL MEMORY LAYOUT
WRITING USER INTERRUPT SERVICE ROUTINES
1 Setting Up Interrupt Vectors
2 Interrupt Priorities
.3 Interrupt Service Routine
4 Return From Interrupt Service
5 Issuing Programmed Requests at the Interrupt
Level
User Interrupt Service Routines with the
XM Monitor
DEVICE HANDLERS
Differences Between V2 and V3 Device Handlers
The Parts of a Handler
Adding a SET Option
Monitor Services for Device Handlers
Use of .FORK Process
Use of .SYNCH
Multi-Vector Support
Error Logging
Extended Memory Support for Handlers
Device Time-out Support
Installing and Removing Handlers
Converting Handlers to V03 Format
Patching a V02 Format Handler
Source Edit Conversion of Handlers
Full Conversion of Device Handlers
Device Handler Program Skeleton Outline
Programming for Specific Devices
Magnetic Tape Handlers (MM,MT)
Cassette Tape Handler (CT)
Diskette Handlers (DX,DY)
Card Reader Handler (CR)
High-Speed Paper Tape Reader/Punch (PC)
Console Terminal Handler (TT)
RK06/07 Disk Handler (DM)
Null Handler (NL)
RLO1 Disk Handler (DL)
MULTI-TERMINAL SUPPORT
ERROR LOGGING
The Error Logging Subsystem
The Error Log (EL) Handler
The Error Utility Program (ERRUTL)
Data Format Converter (PSE)
Report Generator (SYE)

FHEFRFHRRRRRREP
e ¢ s e s 4 s 0 8 6 4
WWWWWWN K

[
.
w
.
(o)}

AU W+

e o o 0 o o o o o 0 o s s o s s s 0
.
[OV N S0

.

OO OODOOODO~JANNNN WU & b bbb bW+
s o s s o s o s P « o e o
WO JdJAaAU & W

® o o o o o o o & & 0 8 8 0 o & 5 s s ° s 0 o o o o

e o o o o 6 o s o o o 5 s 0

YO\ OV OOV OV U b b o b o2 b o b oD b o b b b b o B DD DD BB

Ce e .
e

HHRHRHFEFRPRHFRHERERRERRRRPRRRRRRPRRHERERREREERRE

P
.
> w N

.

iii

Page

= X
1 e
H

R

1
NO OO NDNDNNDNDN

I
~

il N o]

CONTENTS (Cont.)

Page
1.6.2 Using the Error Logging Subsystem 1-70
l1.6.2.1 Loading the EL Handler 1-70
1.6.2.2 Using ERRUTL 1-70
1.6.2.3 Converting the Error Log File to a FORTRAN
Data File 1-72
1.6.2.4 Generating the Error Report 1-74
1.6.2.5 Error Logging Example 1-75
1.6.3 Program Interfaces to the EL Handler 1-80
1.6.3.1 On-Line Writing of the Error Buffer 1-80
l1.6.3.2 Auxiliary Calls to the EL Handler 1-81
1.6.3.3 Calling the Error Logger from a Handler 1-82
.6.4 Building the EL Handler 1-83
CHAPTER PROGRAMMED REQUESTS 2-1

PROGRAMMED REQUESTS WITH EARLY VERSIONS OF RT-11
1 Version 1 Programmed Requests
2 Version 2 Programmed Requests
3 Version 3 (or later) Programmed Requests
FORMAT OF A PROGRAMMED REQUEST
SYSTEM CONCEPTS

. . . [L]
OO
=

[

1
2
2.0 2
2.0 2
2.0 2
2.0 2-2
2.1 2-2
2.2 2-4
2.2.1 Channel Number (chan) 2-5
2.2.2 Device Block (dblk) 2-5
2.2.3 EMT Argument Blocks 2-5
2.2.4 Important Memory Areas 2-6
2.2.4.1 Vector Addresses (0-37 octal, 60-477 octal) 2-6
2.2.4.2 Resident Monitor 2-7
2.2.4.3 System Communication Area 2-7
2.2.5 Swapping Algorithm 2-12
2.2.6 Offset Words 2-13
2.2.7 File Structure 2-16
2.2.8 Completion Routines 2-17
2.2.9 Using the System Macro Library 2-18
2.2.10 Error Reporting 2-18
2.3 TYPES OF PROGRAMMED REQUESTS 2-19
2.3.1 System Macros 2-26
2.3.1.1 ..V1../..V2.. 2-27
2.4 PROGRAMMED REQUEST USAGE 2-28
2.4.1 .CDFN 2-30
2.4.2 .CHAIN 2-31
2.4.3 .CHCOPY (FB and XM Only) 2-33
2.4.4 .CLOSE 2-35
2.4.5 .CMKT (FB and XM Only; SJ Monitor SYSGEN

Option) 2-36
2.4.6 .CNTXSW (FB and XM Only) 2-37
2.4.7 .CSIGEN 2-38
2.4.8 .CSISPC 2-41
2.4.8.1 Passing Option Information 2-43
2.4.9 .CSTAT (FB and XM Only) 2-46
2.4.10 .DATE 2-47
2.4.11 .DELETE 2-49
2.4.12 .DEVICE (FB and XM Only) 2-50
2.4.13 .DSTATUS 2-52
2.4.14 -ENTER 2-54
2.4.15 JEXIT 2-56
2.4.16 .FETCH/.RELEAS 2-58
2.4.17 .FORK 2-60
2.4.18 .GTIM 2-61
2.4.19 .GTJB 2-63

iv September 1978

CONTENTS

Page
PREFACE xi
CHAPTER 1 I/0 PROGRAMMING CONVENTIONS 1-1
1.1 MONITOR SOFTWARE COMPONENTS 1-2
1.1.1 Resident Monitor (RMON) 1-2
1.1.2 Keyboard Monitor (KMON) 1-2
1.1.3 User Service Routine (USR) 1-2
1.1.4 Device Handlers 1-2
1.2 GENERAL MEMORY LAYOUT 1-2
1.3 WRITING USER INTERRUPT SERVICE ROUTINES 1-6
1.3.1 Setting Up Interrupt Vectors 1-6
1.3.2 Interrupt Priorities 1-6
1.3.3 Interrupt Service Routine 1-6
1.3.4 Return From Interrupt Service 1-7
1.3.5 Issuing Programmed Requests at the Interrupt
Level 1-7
1.3.6 User Interrupt Service Routines with the
XM Monitor 1-7
1.4 DEVICE HANDLERS 1-7
1.4.1 Differences Between V2 and V3 Device Handlers 1-8
1.4.2 The Parts of a Handler 1-8
1.4.3 Adding a SET Option 1-12
1.4.4 Monitor Services for Device Handlers 1-13
1.4.4.1 Use of .FORK Process 1-13
1.4.4.2 Use of .SYNCH 1-15
1.4.4.3 Multi-Vector Support 1-16
1.4.4.4 Error Logging 1-17
1.4.4.5 Extended Memory Support for Handlers 1-17
1.4.4.6 Device Time-out Support 1-19
1.4.5 Installing and Removing Handlers 1-20
1.4.6 Converting Handlers to V03 Format 1-21
1.4.6.1 Patching a V02 Format Handler 1-21
l1.4.6.2 Source Edit Conversion of Handlers 1-22
1.4.6.3 Full Conversion of Device Handlers 1-23
1.4.7 Device Handler Program Skeleton Outline 1-27
1.4.8 Programming for Specific Devices 1-29
1.4.8.1 Magnetic Tape Handlers (MM,MT) 1-29
1.4.8.2 Cassette Tape Handler (CT) 1-48
1.4.8.3 Diskette Handlers (DX,DY) 1-53
1.4.8.4 Card Reader Handler (CR) 1-54
1.4.8.5 High-Speed Paper Tape Reader/Punch (PC) 1-58
1.4.8.6 Console Terminal Handler (TT) 1-58
1.4.8.7 RK06/07 Disk Handler (DM) 1-59
1.4.8.8 Null Handler (NL) 1-61
1.4.8.9 RLO1 Disk Handler (DL) 1-61
1.5 MULTI-TERMINAL SUPPORT 1-62
1.6 ERROR LOGGING 1-65
l.6.1 The Error Logging Subsystem 1-66
1.6.1.1 The Error Log (EL) Handler 1-68
l1.6.1.2 The Error Utility Program (ERRUTL) 1-69

iii

CONTENTS (Cont.)

Page
1.6.1.3 Data Format Converter (PSE) 1-69
1.6.1.4 Report Generator (SYE) 1-70
l1.6.2 Using the Error Logging Subsystem 1-70
1.6.2.1 Loading the EL Handler 1-70
1.6.2.2 Using ERRUTL 1-70
1.6.2.3 Converting the Error Log File to a FORTRAN
Data File 1-72
1.6.2.4 Generating the Error Report 1-74
1.6.2.5 Error Logging Example 1-75
1.6.3 Program Interfaces to the EL Handler 1-80
1.6.3.1 On-Line Writing of the Error Buffer 1-80
1.6.3.2 Auxiliary Calls to the EL Handler 1-81
1.6.3.3 Calling the Error Logger from a Handler 1-82
1.6.4 Building the EL Handler 1-83
CHAPTER 2 PROGRAMMED REQUESTS 2-1
2.1 FORMAT OF A PROGRAMMED REQUEST 2-2
2.2 SYSTEM CONCEPTS 2-4
2.2.1 Channel Number (chan) 2-5
2.2.2 Device Block (dblk) 2-5
2.2.3 EMT Argument Blocks 2-5
2.2.4 Important Memory Areas 2-6
2.2.4.1 Vector Addresses (0-37 octal, 60-477 octal) 2-6
2.2.4.2 Resident Monitor 2-7
2.2.4.3 System Communication Area 2-7
2.2.5 Swapping Algorithm 2-12
2.2.6 Offset Words 2-13
2.2.7 File Structure 2-16
2.2.8 Completion Routines 2-17
2.2.9 Using the System Macro Library 2-18
2.2.10 Error Reporting 2-18
2.3 TYPES OF PROGRAMMED REQUESTS 2-19
2.3.1 System Macros 2-26
2.3.1.1 <Vl /L0v2,, 2-27
2.4 PROGRAMMED REQUEST USAGE 2-28
2.4.1 .CDFN 2-30
2.4.2 .CHAIN 2-31
2.4.3 .CHCOPY (FB and XM Only) 2-33
2.4.4 .CLOSE 2-35
2.4.5 .CMKT (FB and XM Only; SJ Monitor SYSGEN
Option) 2-36
2.4.6 .CNTXSW (FB and XM Only) 2-37
2.4.7 .CSIGEN 2-38
2.4.8 .CSISPC 2-41
2.4.8.1 Passing Option Information 2-43
2.4.9 .CSTAT (FB and XM Only) 2-46
2.4.10 .DATE 2-47
2.4.11 .DELETE 2-49
2.4.12 .DEVICE (FB and XM Only) 2-50
2.4.13 .DSTATUS 2-52
2.4.14 .ENTER 2-54
2.4.15 .EXIT 2-56
2.4.16 .FETCH/.RELEAS 2-58
2.4.17 .FORK 2-60
2.4.18 .GTIM 2-61
2.4.19 .GTJB 2-63

iv

CONTENTS (Cont.)

Page
2.4.20 .GTLIN 2-64
2.4.21 .GVAL 2-66
2.4.22 .HERR/.SERR 2-67
2.4.23 .HRESET 2-70
2.4.24 .INTEN 2-70
2.4.25 .LOCK/.UNLOCK 2-71
2.4.26 . LOOKUP 2-73
2.4.27 .MFPS/.MTPS 2-76
2.4.28 .MRKT (FB and XM Only; SJ Monitor SYSGEN

Option) 2-78
2.4.29 .MTATCH (FB and XM Monitor SYSGEN Option) 2-80
2.4.30 .MTDTCH (FB and XM Monitor SYSGEN Option) 2-81
2.4.31 .MTGET (FB and XM Monitor SYSGEN Option) 2-82
2.4.32 .MTIN (FB and XM Monitor SYSGEN Option) 2-83
2.4.33 .MTOUT (FB and XM Monitor SYSGEN Option) 2-84
2.4.34 .MTPRNT (FB and XM Monitor SYSGEN Option) 2-85
2.4.35 .MTRCTO (FB and XM Monitor SYSGEN Option) 2-86
2.4.36 .MTSET (FB and XM Monitor SYSGEN Option) 2-87
2.4.37 .MWAIT (FB and XM Only) 2-90
2.4.38 .PRINT 2-90
2.4.39 .PROTECT/.UNPROTECT (FB and XM Only) 2-91
2.4.40 .PURGE 2-93
2.4.41 .QSET 2-94
2.4.42 .RCTRLO 2-95
2.4.43 .RCVD/.RCVDC/.RCVDW (FB and XM Only) 2-96
2.4.44 .READ/.READC/.READW 2-99
2.4.45 . RENAME 2-104
2.4.46 . REOPEN 2-105
2.4.47 .SAVESTATUS 2-106
2.4.48 .Scca 2-108
2.4.49 .SDAT/.SDATC/.SDATW (FB and XM Only) 2-110
2.4.50 .SETTOP 2-113
2.4.51 .SFPA 2-115
2.4.52 .SPFUN 2-116
2.4.53 .SPND/.RSUM (FB and XM Only) 2-119
2.4.54 .SRESET 2-122
2.4.55 .SYNCH 2-123
2.4.56 .TLOCK (FB and XM Only) 2-125
2.4.57 .TRPSET 2-126
2.4.58 .TTYIN/TTINR 2-127
2.4.59 .TTYOUT/.TTOUTR 2-129
2.4.60 .TWAIT (FB and XM Only) 2-132
2.4.61 .WAIT 2-133
2.4.62 .WRITE/.WRITC/.WRITW 2-134
2.5 CONVERTING VERSION 1 MACRO CALLS TO VERSION 3 2-142
2.5.1 Macro Calls Requiring No Conversion 2-142
2.5.2 Macro Calls That Can Be Converted 2-143
CHAPTER 3 EXTENDED MEMORY 3-1
3.1 INTRODUCTION 3-1
3.2 THE LANGUAGE AND CONCEPTS OF RT-11 EXTENDED
MEMORY SUPPORT 3-2
3.3 RT-11 EXTENDED MEMORY FUNCTIONAL DESCRIPTION 3-4
3.3.1 Creating Virtual Address Windows 3-5
3.3.2 Allocating and Deallocating Regions in
Extended Memory 3-8

CONTENTS (Cont.)

Page
3.3.3 Mapping Windows to Regions 3-9
3.3.4 Mapping in the Foreground and Background
Modes 3-12
3.3.4.1 Monitor Loading and Memory Layout 3-12
3.3.4.2 Virtual Mapping 3-12
3.3.4.3 Privileged or Compatibility Mapping 3-13
3.3.4.4 Context Switching of Virtual and Privileged
Jobs 3-14
3.3.5 I/0 to Extended Memory 3-14
3.4 SUMMARY OF PROGRAMMED REQUESTS 3-15
3.4.1 Programmed Requests to Manipulate Windows 3-17
3.4.1.1 Window Definition Block 3-17
3.4.1.2 Using Macros to Generate Window Definition
Blocks 3-19
3.4.1.3 Create an Address Window (.CRAW) 3-21
3.4.1.4 Eliminate an Address Window (.ELAW) 3-22
3.4.2 Programmed Requests to Manage Extended
Memory Regions 3-22
3.4.2.1 Region Definition Block 3-22
3.4.2.2 Using Macros to Generate Region Definition
Blocks 3-23
3.4.2.3 Create a Region (.CRRG) 3-24
3.4.2.4 Eliminate a Region (.ELRG) 3-25
3.4.3 Mapping Requests 3-25
3.4.3.1 Mapping Status (.GMCX) 3-25
3.4.3.2 Map a Window (.MAP) 3-26
3.4.3.3 Unmap a Window (.UNMAP) 3-27
3.5 SUMMARY OF STATUS AND ERROR MONITORING 3-27
3.6 USER INTERRUPT SERVICE ROUTINES WITH THE
XM MONITOR 3-28
3.7 EXAMPLE PROGRAM 3-31
3.8 EXTENDED MEMORY RESTRICTIONS 3-33
3.9 SUMMARY AND HIGHLIGHTS OF RT-11 EXTENDED
MEMORY SUPPORT 3-33
3.9.1 Extended Memory Prerequisites 3-34
3.9.2 What Is Extended Memory Support? 3-34
3.9.3 How Is Extended Memory Support Implemented? 3-34
3.9.4 How To Use Extended Memory Programmed
Requests 3-34
3.9.5 Operational Characteristics of Extended
Memory Support 3-35
CHAPTER 4 SYSTEM SUBROUTINE LIBRARY 4-1
4.1 INTRODUCTION 4-1
4.1.1 Conventions and Restrictions 4-2
4.1.2 Calling SYSF4 Subprograms 4-3
4.1.3 Using SYSF4 with MACRO 4-3
4.1.4 Running a FORTRAN Program in the Foreground 4-6
4.1.5 Linking with SYSF4 4-7
4.2 TYPES OF SYSF4 SERVICES 4-8
4.2.1 Completion Routines 4-17
4.2.2 Channel-Oriented Operations 4-19
4.2.3 INTEGER*4 Support Functions 4-19
4.2.4 Character String Functions 4-20
4.2.4.1 Allocating Character String Variables 4-21
4.2.4.2 Passing Strings to Subprograms 4-22

vi

=

.
.

CONTENTS (Cont.)

Using Quoted-String Literals

LIBRARY FUNCTIONS AND SUBROUTINES

v e o e e o o

v e e

CVUTUNTUTUTN b e BB WWWWWWWWWWINNNNNNNNMNOMNNNNFHEHEEFEEREHEERFREEFEOO NSO O S WN

NBWNHOWOJOUMEBWNHFOWOVWOJAUTBWNHOWONOAUMEWNHOWOJAULSEWNHO

* e

o o o

s 8 8 e e e e 9 e+ 2 0 s e o 0 o s 0 e o+

o © o e 6 o o o 5 8 e o 6 & & o e o 8 o o e e e o o e o o o 6 o o 0 s s s 2 e o s o 0 s o o
o o s o o o o

G G O G G N G T T - R R i O R N N N - T I RN i S I I Rl o ol
WWWWWWWWWWWWWWWWWWWWWLWWWWWWWWWLWWWWWWWWWUWWWWWWWUWWWLWWWWWWWWWWN

o o o
e o o o o o o o o o o

AJFLT

CHAIN

CLOSEC

CONCAT

CVITIM

DEVICE (FB and XM Only)
DJFLT

GETSTR

GTIM

GTJB

GTLIN

IADDR

IAJFLT

IASIGN

ICDFN

ICHCPY (FB and XM Only)
ICMKT

ICSI

ICSTAT (FB and XM Only)
IDELET

IDJFLT

IDSTAT

IENTER

IFETCH

IFREEC

IGETC

IGETSP

IJCVT

ILUN

INDEX

INSERT

INTSET

IPEEK

IPEEKB

IPOKE

IPOKEB

IQSET

IRADS0
IRCVD/IRCVDC/IRCVDF/IRCVDW (FB and XM Only)
IREAD/IREADC/IREADF/IREADW
IRENAM

IREOPN

ISAVES

ISCHED
ISDAT/ISDATC/ISDATF/ISDATW (FB and XM Only)
ISLEEP
ISPFN/ISPFNC/ISPFNF/ISPFNW
ISPY

ITIMER

ITLOCK (FB and XM Only)
ITTINR

ITTOUR

ITWAIT (FB and XM Only)
IUNTIL (FB and XM Only)
IWAIT

vii

CONTENTS (Cont.)

Page
4.3.56 IWRITC/IWRITE/IWRITF/IWRITW 4-80
4.3.57 JADD 4-83
4.3.58 JAFIX 4-84
4.3.59 JCMP 4-84
4.3.60 JDFIX 4-85
4.3.61 JDIV 4-85
4.3.62 JICVT 4-86
4.3.63 JJCVT 4-87
4.3.64 JMOV 4-87
4.3.65 JMUL 4-88
4.3.66 JSUB 4-88
4.3.67 JTIME 4-89
4.3.68 LEN 4-90
4.3.69 LOCK 4-90
4.3.70 LOOKUP 4-92
4.3.71 MRKT 4-93
4.3.72 MTATCH (FB and XM Only) 4-94
4.3.73 MTDTCH (FB anéd XM Only) 4-95
4.3.74 MTGET (FB and XM Only) 4-95
4.3.75 MTIN (FB and XM Only) 4-95
4.3.76 MTOUT (FB and XM Only) 4-96
4.3.77 MTPRNT (FB and XM Only) 4-96
4.3.78 MTRCTO (FB and XM Only) 4-97
4.3.79 MTSET (FB and XM Only) 4-97
4.3.80 MWAIT (FB and XM Only) 4-99
4.3.81 PRINT 4-99
4.3.82 PURGE 4-100
4.3.83 PUTSTR 4-100
4.3.84 R50ASC 4-101
4.3.85 RADS0 4-102
4.3.86 RCHAIN 4-102
4.3.87 RCTRLO 4-103
4.3.88 REPEAT 4-103
4.3.89 RESUME (FB and XM Only) 4-104
4.3.90 scca 4-104
4.3.91 SCOMP 4-105
4.3.92 SCOPY 4-106
4.3.93 SECNDS 4-107
4.3.94 SETCMD 4-107
4.3.95 STRPAD 4-108
4,3.96 SUBSTR 4-109
4.3.97 SUSPND (FB and XM Only) 4-110
4.3.98 TIMASC 4-111
4.3.99 TIME 4-112
4.3.100 TRANSL 4-112
4.3.101 TRIM 4-114
4.3.102 UNLOCK 4-114
4,.3.103 VERIFY 4-115
APPENDIX A DISPLAY FILE HANDLER A-1
A.l DESCRIPTION A-1
A.l.1 Assembly Language Display Support A-2
A.l.2 Monitor Display Support A-3
A.2 DESCRIPTION OF GRAPHICS MACROS A-4
A.2.1 .BLANK A-4
A.2.2 .CLEAR A-4

viii

CONTENTS (Cont.)

Page
A.2.3 . INSRT A-5
A.2.4 . LNKRT A-6
A.2.5 .LPEN A-7
A.2.6 .NAME A-10
A.2.7 . REMOV A-10
A.2.8 .RESTR A-10
A.2.9 .SCROL A-11
A.2.1C . START A-12
A.2.11 .STAT A-12
A.2.12 .STOP A-12
A.2.123 .SYNC/.NOSYN A-13
A.2.14 .TRACK A-13
A.2.15 . UNLNK A-14
A.3 EXTENDED DISPLAY INSTRUCTIONS A-15
A.3.1 DJSR Subroutine Call Instruction A-15
A.3.2 DRET Subroutine Return Instruction A-1l6
A.3.3 DSTAT Display Status Instruction A-16
A.3.4 DHALT Display Halt Instruction A-16
A.3.5 DNAME Load Name Register Instruction A-17
A.4 USING THE DISPLAY FILE HANDLER A-18
A.4.1 Assembling Graphics Programs A-18
A.4.2 Linking Graphics Programs A-18
A.5 PISPLAY FILE STRUCTURE A-20
A.5.1 Subroutine Calls A-20
A.5.2 Main File/Subroutine Structure A-22
A.5.3 BASIC-11 Graphic Software Subroutine
Structure A-23
A.6 SUMMARY OF GRAPHICS MACRO CALLS A-24
A.7 DISPLAY PROCESSOR MNEMONICS A-26
A.8 ASSEMBLY INSTRUCTIONS A-27
A.8.1 General Instructions A-27
A.8.2 VTBASE A-28
A.8.3 VTCALl1 - VTCAL4 A-28
A.8.4 VTHDLR A-28
A.8.5 Building VTLIB.OBJ A-28
A.9 VTMAC A-28
A.10 EXAMPLES USING GTON A-31
APPENDIX B SYSTEM MACRO LIBRARY B-1
APPENDIX C ADDITIONAL I/0O INFORMATION c-1
C.1 I1/0 DATA STRUCTURES c-1
c.1.1 Monitor Device Tables c-1
c.1l.1.1 $PNAME Table Cc-1
Cc.l.1.2 $STAT Table Cc=2
c.1.1.3 SDVREC Table c-4
Cc.1l.1.4 SENTRY Table C-4
c.l.1.5 $UNAM1 and $UNAM2 Tables Cc-5
C.1.1.6 SOWNER Table Cc-5
c.1l.1.7 Adding a Device to the Tables Cc-5
C.l.2 The Low Memory Protection Bitmap Cc-6
Cc.1l.3 Queue Elements c-7
c.1.3.1 I/0 Queue Element Cc-8
C.1l.3.2 Timer Queue Element c-9
C.1.3.3 Completion Queue Element c-10
C.1l.3.4 Synch Queue Element Cc-11
C.1.3.5 Fork Queue Element Cc-12

ix November 1978

CONTENTS (Cont.)

Page
C.1l.4 I/0 Channel Format Cc-12
Cc.2 FLOW OF EVENTS IN I/O PROCESSING C-13
c.3 STUDY OF THE RKO0S5 HANDLER C-15
Cc.4 SYSTEM DEVICE HANDLERS C-38
Cc.4.1 Assembling A System Device Handler c-38
C.4.2 System Device Handler Requirements C-39
C.4.3 The .DRBEG and .DREND Macros Cc-39
Cc.5 STUDY OF THE PC HANDLER C-42
C.6 RT-11 FILE FORMATS C-52
C.6.1 Object File Format (OBJ) C-52
C.6.2 Library File Format (OBJ and MAC) C-54
C.6.2.1 Library Header Format C-55
C.6.2.2 Library Directories C-56
C.6.2.3 Library End Block Format C-57
C.6.3 Absolute Binary File Format (LDA) C-57
C.6.4 Save Image File Format (SAV) C-59
C.6.5 Relocatable File Format (REL) C-61
C.6.5.1 REL Files without Overlays C-62
C.6.5.2 REL Files with Overlays C-63
c.7 THE DEVICE DIRECTORY C-64
c.7.1 RT-11 File Storage C-65
C.7.2 Directory Header Format C-66
C.7.3 Directory Entry Format Cc-67
c.7.3.1 Status Word C-68
C.7.3.2 Name and File Type C-68
C.7.3.3 Total File Length C-68
C.7.3.4 Job Number and Channel Number C-69
C.7.3.5 Date C-69
C.7.3.6 Extra Words C-69
C.7.4 Size and Number of Files c-71
C.7.5 Directory Segment Extensions C-72
c.8 MAGTAPE STRUCTURE Cc-74
c.9 CASSETTE STRUCTURE Cc-76
INDEX Index-1
FIGURES
FIGURE 1-1 RT-11 Memory Layout 1-4
1-2 RT-11 Priority Structure 1-14
1-3 Examples of Operations Performed After the
Last Block Written on Tape 1-37
1-4 Error Logging Subsystem Functional Block
Diagram 1-67
3-1 Page Address Register Assignments to Program
Virtual Address Space Pages 3-5
3-2 Examples of Window Creation 3-6
3-3 Relationship of Windows and Regions 3-7
3-4 Defining Windows for Mapping 3-8
3-5 Regions Created In Extended Memory 3-10
3-6 Typical Mapping Relationship 3-11
3-7 Memory Map with Virtual Foreground Job
Installed 3-13
3-8 RT-11 Privileged Mapping 3-16
3-9 Window Definition Block 3-17
3-10 Region Definition Block 3-22
c-1 Device Status Word c-3
c-2 I/0 Queue Element Format Cc-8

X November 1978

CONTENTS (Cont.)

Page
FIGURES (Cont.)
Cc-3 Timer Queue Element Format Cc-10
c-4 Completion Queue Element Format Cc-11
Cc-5 Synch Queue Element Format Cc-11
Cc-6 Fork Queue Element Format c-12
c-7 I/0 Charpnel Description c-12
c-8 Channel Status Word Cc-13
c-9 Flow of Events in I/O Processing Cc-14
Cc-10 RKO5 Handler Listing Cc-17
c-11 The .DRBEG and .DREND Macros C-40
Cc-12 PC Handler Listing C-43
C-13 Modules Concatenated by Byte C-53
Cc-14 Formatted Binary Format C-54
Cc-15 Library File Format C-55
C-16 Object Library Header Format C-55
Cc-17 Macro Library Header Format C-56
C-18 Library Directory Format C-56
Cc-19 Library End Block Format C-57
Cc-20 Absolute Binary Format (LDA) C-58
c-21 REL File Without Overlays C-62
Cc-22 Relocation Information Format C-62
C-23 REL File with Overlays C-64
C-24 Device Directory Format C-65
Cc-25 File-Structured Device C-65
C-26 Tentative Entry C-65
c=-27 Two Tentative Entries C-66
Cc-28 Permanent Entries C-66
Cc-29 Directory Entry Format C-67
Cc-30 Status Word C-68
Cc=-31 Date Word C-69
C-32 RT-11 Directory Segment c-70
Cc-33 Initialized Cassette Format Cc-76
Cc-34 Cassette With Data Cc=-77
Cc-35 Physical End of Cassette c-77
TABLES

TABLE 1-1 Sequence Number Values for .ENTER Requests 1-32
1-2 Sequence Number Values for .LOOKUP Requests 1-34
1-3 DEC 026/DEC 029 Card Code Conversions 1-55
1-4 Error Logging Subsystem Components 1-66
1-5 ERRUTL Options 1-71
1-6 PSE Options 1-73
1-7 SYE Options 1-75
2-1 Summary of Programmed Requests 2-19
2-2 Requests Requiring the USR 2-25
2-3 Soft Error Codes (SERR) 2-68
3-1 Virtual Address Boundaries 3-18
3-2 Extended Memory Error Codes 3-29
3-3 Extended Memory Status Words 3-30
4-1 Summary of SYSF4 Subprograms 4-8
4-2 Special Function Codes (Octal) 4-69
c-1 Low Memory Bitmap Cc-6
c-2 Information in Block 0 C-59
Cc-3 Directory Header Words Cc-67
c-4 Entry Types C-68
Cc-5 ANSI Magtape Labels in RT-11l Cc-75
c-6 Cassette File Header Format c-78

x.1l November 1978

PREFACE

The Advanced Programmer's Guide is intended as a reference document
primarily for advanced RT-11 users (including FORTRAN users) and
MACRO-11 assembly language programmers. Although there are no
absolute prereguisites for reading and understanding the contents of
this manual, it is recommended that the reader be familiar with RT-11
operating procedures, PDP-11 system architecture, PDP-11 machine
language, MACRO-11 assembly language and if appropriate, another
higher level language such as FORTRAN 1IV.

The Advanced Programmer's Guide consists of the following four
chapters and three appendices:

Chapter 1, 1I/0 Programming Conventions - This chapter presents
information on RT-11 supported 1/0 devices, associated device handlers
and the various monitor services offered by the RT-11 operating
system.

Chapter 2, Programmed Requests - This chapter describes all of the
RT-11 programmed requests and provides information on how to use them
to develop user-written programs. Program examples are also included
to facilitate the explanations.

Chapter 3, Extended Memory - This chapter deals exclusively with the
RT-11 concept of memory extension. The memory extension concepts and
all memory extension programmed requests are explained in this
chapter. An example program utilizing all memory extension programmed
requests is included to assist users in developing their own programs
to use this new feature.

Chapter 4, System Subroutine Library - This chapter describes all of
the RT-11 FORTRAN-callable subroutines. This chapter also contains
examples of the calls and most of the subroutines.

Appendix A, Display File Handler - This appendix describes the
graphics support for the RT-11 operating system. Program examples are
included to assist users in developing their own display program.

Appendix B, System Macro Library - This appendix is a listing of the
RT-11 System Macro Library (SYSMAC), which provides the expansions for
all RT-11 macro instructions.

Appendix C, Additional I/0 1Information - This appendix provides
software support information for RT-11 programmers.

xi November 1978

CHAPTER 1

I/0 PROGRAMMING CONVENTIONS

This chapter introduces the MACRO-11 assembly language programmer to
the basic concepts and features of device handlers and interrupt
service routine for the RT-11 operating system. This system includes
three compatible monitors and a variety of programming development

tools and system utilities. The monitors and their designations are
as follows:

SJ - Single-Job
FB - Foreground/Background
XM - Extended Memory

The SJ monitor is a single user, single job system restricted to 28K
words of memory. The FB monitor is a single user, two job system also
restricted to 28K words of memory. PDP-11/03 systems that include the
MSV11-DD memory board with a special jumper can access 30K words of
memory under SJ and FB. The XM monitor is an extension of the FB
monitor that supports up to 124K words of physical memory.
Operational XM monitors are not distributed on the RT-11 kit. A
SYSGEN must be performed to create these monitors and their device
handlers. See the RT-11 System Generation Manual for details.

In addition to the monitors already discussed, the SYSGEN program
allows the user to create a custom monitor, containing those features
required in a particular application. Such a custom monitor can have
more or fewer features and can be larger or smaller than the standard
monitor (see the RT-11 System Generation Manual for details).

Single-job operation supports only one program in memory at any time;
execution of the program continues until either it is completed or it
is physically interrupted by the user at the console.

In a foreground/background environment (under either the FB or XM
monitor), two independent programs can reside 1in memory. The
foreground program is given priority and executes until it
relinquishes control to the background program; the background
program executes until control is again required by the foreground

program. This sharing of system resources greatly increases the
efficiency of processor usage.

RT-11 is fast, reliable, and easy to use. It incorporates a
sophisticated set of programming tools for the applications or

end-user programmer. These tools and techniques are discussed in
subsequent sections.

1-1

I/0 PROGRAMMING CONVENTIONS

1.1 MONITOR SOFTWARE COMPONENTS
The main RT-11 monitor software components are:
Resident Monitor (RMON)

Keyboard Monitor (KMON)

User Service Routine (USR) and Command String Interpreter (CSI)

Device Handlers

1.1.1 Resident Monitor (RMON)

The resident monitor is the permanently memory-resident part of RT-11.
The programmed requests for most services of RT-11 are handled by
RMON. RMON also contains the console terminal support (TT.SYS is not
resident in SJ), error processor, system device handler, EMT
processor, and system tables.

1.1.2 Keyboard Monitor (KMON)

The keyboard monitor provides communication between the user at the
console and the RT-11 system. Keyboard monitor commands allow the
user to assign logical names to devices, run programs, load device
handlers, invoke indirect command files, and control
foreground/background operations. A dot at the left margin of the
console terminal page indicates that the keyboard monitor is in memory
and 1is waiting for a user command. KMON is 7400 octal (or 3840
decimal) words long in RT-11 V03B distributed BL, SJ, and FB monitors.

1.1.3 User Service Routine (USR)

The user service routine provides support for the RT-11 file structure
and handles some of the programmed requests for RT-11. It loads
device handlers, opens files for read or write operations, deletes and
renames files, and creates new files. The Command String Interpreter
is part of the USR and can be accessed by any program to process a
command string. In XM, the USR is permanently resident.

1.1.4 Device Handlers

Device handlers for the RT-11 system perform the actual transfer of
data to and from peripheral devices. New handlers can be added to the
system as files on the system device and can be interfaced to the
system easily by wusing the keyboard monitor INSTALL command (see
Chapter 4 of RT-11 System User's Guide).

1.2 GENERAL MEMORY LAYOUT

The diagrams in Figure 1-1 show how components of the RT-11 system are
arranged in memory.

Diagram A illustrates a single-job system just after it was
bootstrapped. Location 54 in the system communication area contains
the value x, which represents the bottom address of RMONSJ.

1-2

1/0 PROGRAMMING CONVENTIONS

Diagram B shows the same single-job system with a background job
executing. KMON is not resident in memory while the job is running.
If the user job needs the memory space, it can swap over the USR.

Diagram C shows a foreground/background system. Two handlers were
made resident by the LOAD command. They reside below RMONFB and above
the USR. There is a background job running, so KMON is not shown in
memory. If the background job needs the memory space, it can swap
over the USR.

Diagram D illustrates the same foreground/background system. There is

a foreground job running. There is no background job, so KMON is in
memory.

Diagram E shows the same foreground/background system. Both the
foreground and the background jobs are in memory. The background job
can swap the USR at its default location Jjust below the foreground
job. The foreground 7job must allocate space within its own program
area in order to swap in the USR.

Diagram F shows an extended memory system. There are two loaded
device handlers, and both a foreground and a background job are in
memory. Note that the USR is always resident.

Diagram G illustrates some characteristics of RT-11's memory
allocation scheme. The third device handler in the diagram was loaded

after the foreground job was started. If the foreground job were
stopped and unloaded, the space it occupied would be placed in the
free memory list. If the user needed to load another handler, it

would reside in that free space if it could fit. If it did not fit,
it would reside below the third handler. The USR and KMON slide down
in memory to accommodate such new additions.

The memory area directly above the USR contains indirect file
information. This section is always located just above the USR, and
moves up or down in memory along with the USR. 1If, for example, the
third handler were unloaded, the USR and the KMON would slide up in
memory, and reside just below the foreground job.

I/0 PROGRAMMING CONVENTIONS

A B
32K 32K -
DEVICE REGISTERS DEVICE REGISTERS
28K 28K
SYSTEM DEVICE HANDLER SYSTEM DEV.CE HANDLER
RMONSJ AND ITS STACK RMONSJ AND ITS STACK
X x N
USR JHR
x-1000 N

KMON AND ITS STACK

USEFR JOB
J. AVAILABLE SPACE =
T FOR USER JOB

—3y

1000\ — o _
DEFAULT USER IJOB STACK SPACE
500 500
60 DEVICE INTERRUPT VECTORS DEVICE INTERRUPT VECTORS
60
57
40 SYSTEM COMMUNICATION AREA i; SYSTEM COMMUNICATION AREA
37
> HARDWARE/SOFTWARE TRAP VECTORS 37 HARDWARE/SOFTWARE TRAP VECTORS
0 0
SJ When First Bootstrapped SJ After a User Job is Started
C D
32K 32K
DEVICE REGISTERS DEVICE REGISTERS
28K 28K
SYSTEM DEVICE HANDLER SYSTEM DEVICE HANDLER
RMONFB RMONFB
X X
LOADED HANDLER 1 LOADED HANDLER 1
LOADED HANDLER 2 LOADED HANDLER 2
USR FOREGROUND JOB AND ITS STACK
USR
KMON AND ITS STACK
BACKGROUND JOB
1000 | . __ __ _ _ —_— —]
DEFAULT BACK|/GROUND JOB
500 STACKY SPACE 500
DEVICE INTERRUPT VECTORS 60 DEVICE INTERRUPT VECTORS
60
57
i; SYSTEM COMMUNICATION AREA 40 SYSTEM COMMUNICATION AREA
37 37
0 HARDWARE/SOFTWARE TRAP VECTORS 0 HARDWARE/SOF TWARE TRAP VECTORS
FB With Loaded Device Handlers and a Background Job FB With Loaded Device Handlers and a Foreground Job

Figure 1-1 RT-11 Memory Layout

32K

28K

1000

500

57

40
37

1/0 PROGRAMMING CONVENTIONS

E

DEVICE REGISTERS

SYSTEM DEVICE HANDLER

RMONFB

LOADED HANDLER 1

LOADED HANDLER 2

FOREGROUND JOB AND ITS STACK

USR SWAP LOCATION
FOR BACKGROUND JOB

BACKGROUND JOB

DEFAULT BACK [GROUND JOB
STACK YSPACE

DEVICE INTERRUPT VECTORS

SYSTEM COMMUNICATION AREA

HARDWARE/SOF TWARE TRAP VECTORS

FB With Loaded Device Handiers
and Foreground and Background Jobs

F
Top of
Memory DEVICE REGISTERS
b~
o EXTENDED MEMORY N
28K
SYSTEM DEVICE HANDLER
RMONXM
X
LOADED HANDLER 1
LOADED HANDLER 2
FOREGROUND JOB AND ITS STACK
USR (ALWAYS RESIDENT)
BACKGROUND JOB
1000 e - = ———
DEFAULT BACK| GROUND JOB
500 STACKY SPACE
60 DEVICE INTERRUPT VECTORS
Z; SYSTEM COMMUNICATION AREA
37
HARDWARE/SOFTWARE TRAP VECTORS
0
XM With Loaded Handlers
and Foreground and Background Jobs
G

“op of
Memory

DEVICE REGISTERS

RMONSJ, RMONFB, OR RMONXM

LOADED HANDLER 1

LOADED HANDLER 2

FOREGROUND JOB (IF FB OR XM)
AND ITS STACK SPACE

LOADED HANDLER

3

INDIRECT COMMAND FILE AND
MONITOR COMMAND EXPANSION DATA

USR

KMON (IF NO BACKGROUND JOB)

500

60

DEVICE INTERRUPT VECTORS

57
40

SYSTEM COMMUNICATION AREA

37

HARDWARE/SOFTWARE TRAP VECTORS

Figure 1-1

(Cont.)

General Example

RT-11 Memory Layout

I/0 PROGRAMMING CONVENTIONS

In addition to FRUN, which 1loads foreground jobs, other monitor
commands can alter the memory map; these are R, RUN, GET, LOAD,
UNLOAD, GT ON, GT OFF, and indirect command files invoked by "@". The
LOAD command causes device handlers to be resident until an UNLOAD
command is performed. The UNLOAD command removes handlers that have
been 1loaded. The GT ON and GT OFF commands cause terminal service to
utilize the VT11l or VS60 display hardware. RT-11 maintains a free
memory list to manage memory. Memory space is always reclaimed if
possible by moving KMON/USR up. If it cannot be reclaimed, it is
placed in the free memory list.

1.3 WRITING USER INTERRUPT SERVICE ROUTINES

Certain programming conventions must be observed in RT-11 when writing
user interrupt service routines. All device handlers follow these
conventions. The procedures described in this section are necessary
and must be followed to prevent system failures when jobs are running
under RT-11.

1.3.1 sSetting Up Interrupt Vectors

Devices for which no RT-11 handler exists must be serviced by the user
program. For example, no LPS11 device handler exists; to use an
LPS11, the user must incorporate the interrupt service routine within
the program or write the device handler himself. It 1is the
responsibility of the program to set up the vector for devices such as
this. The recommended procedure 1is not to simply move the service
routine address and 340 into the desired vector; rather, it 1is to
precede the operation with a .PROTECT macro call. The .PROTECT
ensures that neither the other job nor the monitor already has control
of that device (FB and XM only). If the .PROTECT is successful, the
vector can be initialized.

1.3.2 Interrupt Priorities

The status word for each interrupt vector should be set such that when
an interrupt occurs, the processor takes it at level 7. Thus, a
device that has its vectors at 70 and 72 has location 70 set to its
service routine; location 72 contains 340. The 340 causes the
service routine to be entered with the processor set to inhibit any
further device interrupts.

1.3.3 Interrupt Service Routine

If conventions are followed, the processor priority will be 7 when an
interrupt occurs. The first task of the interrupt cservice routine is
to declare that an interrupt has occurred and to lower the processor
priority to the correct value. This can be done by using the .INTEN
macro call. The call is:

. INTEN priority
or
. INTEN priority,pic

The .INTEN call is explained in Chapter 2, Programmed Reguests. On
return from the .INTEN call, the processor priority is set properly;

1/0 PROGRAMMING CONVENTIONS

registers 4 and 5 have been saved and can be used without the
necessity of saving them again. All other registers must be saved and
restored by the program if they are used.

For example, a user device interrupts at processor priority 5:
DEVPRI=5

DEVINT: .INTEN DEVPRI ;NOTE, NOT #DEVPRI

RTS PC

If the contents of the processor status word, loaded from the
interrupt vector, are significant to the interrupt service routine
(such as the condition bits), the PS should be moved to a memory
location (not the stack) before issuing the .INTEN. The interrupt

service routine uses the monitor stack and should avoid excessive use
of stack space.

1.3.4 Return From Interrupt Service

When an interrupt is serviced, instead of issuing an RTI to return
from the interrupt, the routine must exit with an RTS PC. This RTS PC
returns control to the monitor (assuming that .INTEN has been
executed), which then restores registers 4 and 5, and executes the
RTI.

1.3.5 1Issuing Programmed Requests at the Interrupt Level

Programmed requests from interrupt routines must be preceded by a
.SYNCH call. This ensures that the proper job is running when the
programmed request is issued. The .SYNCH call assumes that nothing is
pushed onto the stack by the user program between the .INTEN call and
the .SYNCH call. On successful completion of a .SYNCH, RO and Rl have
been saved and are free to be used. R4 and R5 are no longer free, and
should be saved and restored if they are to be used. Programmed
requests that require USR action must not be called from within
interrupt routines.

1.3.6 User Interrupt Service Routines with the XM Monitor

There are three restrictions to using user interrupt service routines

with the XM monitor. See Section 3.6.1 of this manual for specific
details.

1.4 DEVICE HANDLERS

This section deals with the device handlers that are part of the RT-11
operating system. Any device dependent information or general
information required by the user is contained here. No mention of a
handler implies that no special conditions must be met to use that
device (all disks, except diskette, RLOl, and RK06/07 are in this
category, and therefore are not covered here).

I/0 PROGRAMMING CONVENTIONS

1.4.1 Differences Between V2 and V3 Device Handlers

The RT-11 device handler format changed slightly from version 2C to
version VO03. (There are no changes from version 3 to version 3B.)
Most of these changes were brought about by the addition of a system
generation process and many new handler options in V03. Changes are

implemented through a new set of handler macros, which make conversion
easier.

The new handler options being offered in version 3 and later releases
include: error logging, I/0 time-out, extended memory support,
multi-vectored device support and fork level processing. All but fork
processing are options that are determined at SYSGEN time. The
monitor and the set of handlers must have matching options, so a
common option definition file must be used to assemble all the
components (drivers and monitors) of the system.

In addition, RT-11 version 2C and version 3 non-NPR device handlers
follow different conventions for signalling the end of file condition.
In version 2C, a non-NPR device handler sets the EOF bit in the
channel status word as soon as it detects an end of file condition on
the device (for example, no more paper in the paper tape reader). It
can set the EOF bit even if the program's buffer is only partly full.
Thus, the program may find the EOF bit on after a transfer that
returns some usable data. Programs written for version 2C check the
EOF bit after using the last data read.

In contrast, a version 3 non-NPR device handler does not set the EOF
bit in the channel status word if the handler returns any usable data
to the program. When such a handler detects an end of file condition
on the device, it checks to see whether any data has been loaded in
the program's buffer. If the buffer is not empty, the handler
remembers the end of file condition but does not set the EOF bit.
Instead, it fills the rest of the program's buffer with zeros and
returns. The next time the handler is entered, it finds the
remembered end of file condition, sets the EOF bit, and returns an
empty buffer. Programs written for version 3 check the EOF bit as
soon as the read is complete; they assume that the buffer is empty if
the bit is on.

NOTE

Device handlers distributed with RT-11,
Version 1, will not work properly with
Version 2. Version 2 device handlers
require changes to utilize all features
of the version 3 release. Any
user-written device handlers should be
rewritten to comply with the Version 3
conditions. Instructions for
interfacing new handlers to RT-11 are
provided in the following portions of
Section 1.4 of this manual.

1-8 September 1978

1/0 PROGRAMMING CONVENTIONS

1.4.2 The Parts of a Handler

Every RT-11 format handler has the following seven parts: the
preamble, SET options, header, I/0 initiation code, asynchronous trap
processing code, I/0 completion code, and terminator. The following
sections describe the format of each of these parts. An example
program of a device handler is included at the end of this section.

In the following text, "dd" represents the two-character physical
device name.

1. Preamble

The preamble typically contains the trap and device register
definitions and global declarations. 1In version V03 several
new items are required in the handler preamble:

a. An .MCALL statement is needed for the set of driver
macros used in the handler.

.MCALL .DRBEG,.DRAST,.DREND,.DRFIN

b. The device size (former contents of $DVSIZ table) and the
device status word (contents of $STAT table) must be
defined in the preamble, using the mnemonics ddDSIZ and
ddsTsS. These values are assembled into the handler
.ASECT (block 0 of the SYS file) and are extracted from
the handler file when needed by the .DSTATUS request.

c. The default values of handler system generation options
can be included in the preamble section. They are not

1-8.1 September 1978

1/0 PROGRAMMING CONVENTIONS

essential if a system definition file is always included
when assembling the handler. Otherwise, assembly errors
can occur.

The default definitions currently include:

.1IF NDF MMGST,MMGST=0 ;NO 18-BIT I/0
.IIF NDF ERLG,ERLG=0 ;NO ERROR LOGGING
.IIF NDF TIMSIT,TIM$SIT=0 ;NO TIME-OUT

d. The .QELDF macro can be invoked to symbolically define
all queue element offsets for the specified set of system
generation options. .QELDF must be invoked after the
system generation options have been defined. See Section
1.4.4.5 for the queue element offset symbolics.

SET Options

The option list starts at 400 in the handler .ASECT and is
terminated by a zero word. Devices that can be used as the
system device can have SET options when they are assembled
and linked for use as non-system devices.

The system generation procedure permits the separate assembly
of the system device. The SET options should be enclosed in
conditionals, being assembled only if the symbol $SYSDV is
undefined. The options are not assembled into a system
device and the SET command is ineffective. The monitor must
be patched to change an option in the system device. Section
1.4.3 describes how to add a SET option to a handler.

Header

The header contains standard data in fixed locations used by
the monitor when it 1is interfacing with the handler. The
header has two forms; one for a single vector device and one
for a multiple vector device.

a. Single-vector handlers

The device handler header 1is generated by the macro
.DRBEG. This macro has the following form:

.DRBEG name,vec,dsiz,dstat

where:

name is the two-letter device name.

vec is the device vector.

dsiz is the number of 256-word blocks of storage
on the volume (0 if non-directory
structured); returned to user by .DSTATUS
request.

dstat is the device status word (not to be

confused with hardware CSR); returned to
user by .DSTATUS request.

This macro generates the handler .ASECT and .PSECT. It
also generates any necessary globals, labels and the
queue header. The load point of the handler is given the

symbolic name ddSTRT. The gueue header words have the
names ddLQE and ddCQE.

1-9

I/0 PROGRAMMING CONVENTIONS

For example: .DRBEG dd,ddvEC,ddDS1z,ddSTS
.DRBEG RK,220 ,RKDSIZ ,RKSTS

b. Multi-vector handlers

The monitor can load device handlers having more than one
vector. This feature facilitates the use of
multi-controller devices. In a driver with multiple
vectors, the word normally containing the interrupt
vector contains an offset to a table of vector triplets.
The difference in meaning of the word is flagged by
setting bit 15, The first word of the multi-vector
handler header is as follows:

+WORD <table-.>/2-1+4100000

where:
table is a table of vector triplets of the form:
VECTOR
TRAP ADDRESS-.
PS

The table is terminated with a zero word.

The .DRBEG macro is similar to the single vector version
with the addition of a final argument, vtbl,

-DRBEG name,vec,dsiz,dstat,vtbl
where:

vtbl is the name of a table of vector triplets in a
handler requiring multiple vectors.

For example: .DRBEG PC,PCVEC,PCDS1Z,PCSTS,PTBL

DX, DY, and PC are devices that use this feature.

I/0 Initiation Section

This section is entered in system state (with context
switching inhibited) by the queue manager. All registers are
available for use. The queue element to be processed is
pointed to by ddCQE. The I/0 initiation section must return
with a RTS PC.

Asynchronous Trap Entry Points

The asynchronous trap entry points consist of the interrupt
entry and abort entry. The AST entry point branch table is
Ccreated by a macro called .DRAST. This macro has the form:

.DRAST name,pri[,abo]

where:
name is the two-letter device name.
pri is the priority at which the interrupt service

is to execute.

1-10 September 1978

1/0 PROGRAMMING CONVENTIONS

abo is the optional abort entry code symbolic label
(if not specified, an RTS PC is generated).

The .DRAST macro generates the AST branch table and an .INTEN
call for the interrupt service routine. The 1interrupt
routine has the symbolic name ddINT, which is declared global
by the macro if the device is to be a system device.
For example:

.DRAST RK,5

.DRAST DT,6,DTSTOP
In a multi-vector handler, the abort entry point is assumed
to precede the interrupt entry point having the label dd4INT,
where dd is the two-letter device name declared initially in
the .DRBEG macro.
I1/0 Completion

A macro called .DRFIN is provided for completing an 1I/0
transfer and returning the queue element. The macro call is:

.DRFIN name
where name is the two-letter device name.
This macro points R4 to the handler queue head and jumps to
the monitor I/0 completion routine. Its expansion 1is
identical to the current procedure and it is provided as a
shorthand method of completing a transfer. It also serves to
isolate system dependencies from the handler code.
For example:

.DRFIN RK

expands to:

MOV PC,R4

ADD #RKCQE-. ,R4

MOV @#54 ,R5

JMP @270 (RS)

Handler Termination

A macro is provided to terminate the device handler code.
Wwhen invoked, the macro generates a table of pointers to
monitor routines (interrupt entry, error logging, etc.), and
computes the size of the handler load module for use by
.FETCH. The macro call is:

.DREND name
where name is a two-letter device name.
For example:

.DREND RK

I/0 PROGRAMMING CONVENTIONS

1.4.3 Adding a SET Option

The keyboard monitor SET command permits certain device handler
parameters to be changed from the keyboard. For example, the width of
the line printer on a system can be SET with a command such as:

SET LP WIDTH=80

This is an example of a SET command that requires a numeric argqument.
Another type of SET command is used to indicate the presence or
absence of a particular function. An example of this is a SET command

to specify whether an initial form feed should be generated by the LP
handler:

SET LP FORM (generate initial form feed)
SET LP NOFORM (suppress initial form feed)

In this case, the FORM option can be negated Dby appending the NO
prefix.

The SET command is entirely driven by tables contained in the device
handler itself. Making additions to the list of SET options for a
device is easy, requiring changes only to the handler, and not to the
monitor. This section describes the method of creating or extending
the list of SET options for a handler. The SET command is described
in Chapter 4 of the RT-11 System User's Guide.

Device handlers have a file name in the form Xx.5YS, where xx 1is the
two-letter device name (for example, LP.SYS). Handler files are
linked in memory image format at a base address of 1000, in which a
portion of block 0 of the file is used for system parameters. The
rest of the block is unused, and block 0 is never FETCHed into memory.
The SET command uses the area in block 0 of a handler from 400 to 776
(octal) as the SET command parameter table. The first argument of a
SET command must always be the device name; (LP in the previous
example command lines). SET looks for a file named XxX.SYS (in this
case LP.SYS) and reads the first two blocks into the USR buffer area.
The first block contains the SET parameter table, and the second block
contains handler code to be modified. When the modification is made,
the two blocks are written out to the handler file, effectively
changing the handler. The SET parameter table consists of a sequence
of four-word entries. The table is terminated with a zero word; if
there are no options available, location 400 must be zero. Each table
entry has the form:

.WORD value
.RADS0 /option/ (two words of Radix-50)
.BYTE <routine-400>/2
.BYTE mode
where:
value is a parameter passed to the routine in register 3.
option is the name of the SET option; for example, WIDTH or

FORM.

routine is the name of a routine following the SET table that
does the actual handler modification.

mode indicates the type of SET parameter:

a. Numeric argument - byte value of 100
b. NO prefix valid - byte value of 200

1-12

I/0 PROGRAMMING CONVENTIONS

The SET command scans the table until it finds an option name matching
the input argument (stripped of any NO prefix). For the first example
command string, the WIDTH entry would be found. The information in
this table entry tells the SET processor that O.WIDTH is the routine
to call, that the prefix NO is illegal and that a numeric argument is
requirea. Routine O.WIDTH uses the numeric argument passed to it to
modify the column count constant in the handler. The value passed to
it in R3 from the table is the minimum width and is used for error
checking.

The following conventions should be observed when adding SET options
to a handler:

1. The SET parameter tables must be located in block 0 of the
handler file and should start at location 400. This is done
by using ar .ASECT 400.

2. Each table entry is four words long, as described previously.
The option name may be up to six Radix-50 characters long,
and must be left-justified and filled with spaces if
necessary. The table terminates with a zero.

3. The routine that does the modification must follow the SET
table 1in block 0. It 1is called as a subroutine and
terminates with an RTS PC instruction. If the NO prefix was
present and valid, the routine is entered at entry point +4.
An error is returned by setting the C bit before exit. If a
numeric argument is required, it is converted from decimal to
octal and passed in RU. The first word of the option table
entry is passed in R3.

4. The code in the handler that is modified must be in block 1
of the handler file; that is, in the first 256 words of the
handler.

5. Since an .ASECT 400 was used to start the SET table, the
handler must start with an .ASECT 1000.

6. The SET option should not be used with system device
handlers, since the .ASECT will destroy the bootstrap and
cause the system to malfunction.

1.4.4 Monitor Services for Device Handlers

The RT-11 monitor provides a set of services for device handlers.
These services are located in the resident monitor and can be shared
by all device handlers to minimize overall system size and simplify
the development and conversion of handlers. The services consist of
interrupt entry processing, fork 1list processing, error 1logging,
request time-out, and extended memory support. The interrupt entry
processing and the fork 1list processing are permanent monitor
features. The rest can be included or excluded at SYSGEN time. The
following sections discuss the extent of each service and describe
when it should be used.

1.4.4.1 Use of .FORK Process - RT-11 provides handlers with the
capability of executing code as a serialized, zero-priority system
process. This process, called a fork process, |is similar to the
service provided 1in other PDP-11 operating systems. A handler can
request a fork process while at interrupt level (that 1is, after the

I/0 PROGRAMMING CONVENTIONS

-INTEN request). The stack must be clean before the .FORK request is
issued. That is, the stack must be in the same state when the .FORK
request is issued as it was after the .INTEN request was processed.
Anything pushed onto the stack after the .INTEN request must be popped
off the stack before the .FORK request is issued. Control returns to
the line following the .FORK request when the fork request is granted.
See Figure 1-2 for a diagram of RT-1l's priority structure.

The .FORK request causes the interrupt to be dismissed and adds the
driver's request to a first-in/first-out (FIFO) list. The fork gueue
manager is activated after the last interrupt is Gismissed but before
the scheduler 1is called. Drivers are called serially in FIFO order,
at priority level 0 and system state (that is, monitor stack, context
switching inhibited). Registers R4 and R5 are preserved through the
-FORK request, and in addition, registers RO-R3 are available for use
at fork level.

Processor Priority Software Priority
7 P—
6 - Device Handlers
and
5 I Interrupt Service
Routines
4 PR
Fork =™ Fork level

Foreground Completion Routines
FG—<C L
Foreground Mainline

8G - Background Completion Routines
Background Mainline

Monitor’s idle loop

0 Null Job

Figure 1-2 RT-11 Priority Structure

The handler must provide a four-word fork queue element that is used
to preserve R4, R5 and the return PC while in the fork queue. The
first word of the fork queue element is the link word and must be zero
when the .FORK request is issued. A non-zero link implies the queue
element is in use. However, the monitor does not check this case.
This implies that the interrupt service code should check the link
word before issuing the .FORK if the code could possibly be used in a
re-entrant way.
The .FORK request has the form:

.FORK frkblk
where:

frkblk is the name of fork list element.
For example:

.FORK ddFBLK

1-14

I1/0 PROGRAMMING CONVENTIONS

where:
ddFBLK is defined as
ddFBLK: .WORD 0,0,0,0

The .FORK request has several applications in a real-time systems
environment. It permits lengthy but non-critical interrupt processing
to be postponed until all other interrupts are dismissed. 1Its use in
the card reader and line printer drivers solves some of the latency
problems encountered in remote batch and DECNET applications.

For example, the card reader driver internally buffers 80 columns of
card data. It receives an interrupt once per column, and translates
and moves the character into its internal buffer at interrupt level.
It then moves its internal buffer to the user buffer, a process that
can take up to 2.5 msec. In version 2C, this process took place at
priority level six, which meant that interrupts at this priority and
lower could be locked out for this time. This can cause data late
errors on communications devices when the card reader is active at the
same time.

This problem is not solved by dropping priority to zero since the card
reader can have interrupted a lower priority device. Lowering
priority causes re-entrancy problems in the other device drivers.
Using a .SYNCH does not always solve the problem. The SJ monitor only
simulates a .SYNCH and drops priority to zero, which produces the same
re-entrancy problems. The FB monitor must perform a context switch
since .SYNCH returns to the caller in user context, running on the
user stack. This 1is a lengthy process and does not occur at all if
there is a compute bound foreground job.

The .FORK request is the optimum solution to the problem. It returns
at priority =zero, but only when all other interrupts have been
dismissed and before control is returned to the interrupted wuser
program.

Actual fork support is not provided in SJ unless timer support is
generated in the monitor. Instead, the .FORK is simulated to the
extent that registers RO-R3 are saved before the driver is called
back. Beyond that, no serialization of interrupts is provided.

1.4.4.2 Use of .SYNCH - The .SYNCH request is provided to allow
device drivers and user interrupt service routines to issue programmed
requests. When issued, the .SYNCH regquest dismisses the interrupt and
queues the .SYNCH block provided on the I/O completion qgueue (in FB
and XM°monitors). The job is flagged as having an I/0 completion
routine pending, which causes the scheduler to switch in the job.

This procedure is necessary since programmed reguests must be issued
in job context, and interrupts occur asynchronously. The .SYNCH
request forces a context switch so the code following the .SYNCH runs
in job context. In the SJ monitor the .SYNCH request simulates the
register manipulations of the FB .SYNCH processor and then returns
immediately to the caller at priority level 0. This occurs because
the SJ monitor has a single job context and does not use an I/0
completion gqueue. This is the reason the .SYNCH reguest cannot be
used to simulate the functions of the .FORK request in SJ systems.

The .SYNCH request can be issued either after an .INTEN request or

after a .FORK request. The handler must not have pushed anything on
the stack when the .SYNCH is issued.

1-15

I/0 PROGRAMMING CONVENTIONS

The XM monitor must also change the mapping mode when calling 1I/0
completion routines. Regular I/0 completion routines are run in user
context and user mapping. The .SYNCH routines are run in user
context, but the XM monitor requires all interrupt service routines
(both user and system handler) to run in kernel mode. Thus, under the
XM monitor, the .SYNCH request does not change mapping mode from

kernel to user mode, but runs the .SYNCH routine in user context and
kernel mapping.

1.4.4.3 Multi-Vector Support - A feature is provided to 1load device
handlers having more than one vector. Previously the handler
initialization code was required to set up the extra vectors. This
feature makes it easier to support multi-vector devices

The presence of multi-vector support is transparent to single-vector
handlers.

The handler header normally has the form:

Vector

Word Offset to Interrupt Routine
PS

End of Queue Pointer

Head of Queue Pointer

In a handler with multiple vectors, the word containing the interrupt
vector contains an offset to a table of vector triplets. The
difference in meaning of this word is flagged by setting bit 15. The
first word of the handler header contains:

.WORD <table-.>/2-1+100000
where table is a table of vector triplets of the form:

VECTOR

TRAP ADDRESS-.

PS
The table is terminated with a zero word. For example, a handler to
handle both input and output for a PCll High Speed Paper Tape
Punch/Reader would have a header, generated by .DRBEG, of the form:

.WORD <PTBL-.>/2-1+100000 ;OFFSET TO TABLE OF VECTORS

.WORD PRINT-. ;OFFSET TO FIRST INTERRUPT
.WORD 340 ;DUMMY PRIORITY

.WORD 0

.WORD 0

where PTBL has the form:

PTBL: .WORD 70 :READER VECTOR
.WORD PRINT-. ;READER TRAP ROUTINE OFFSET
.WORD 340
.WORD 74 ;s PUNCH VECTOR
.WORD PPINT-. ;PUNCH TRAP ROUTINE OFFSET
.WORD 340
.WORD 0 ;END OF TABLE

1-16 September 1978

I/0 PROGRAMMING CONVENTIONS

Note that only tne status bits in the PS word specified are actually
loaded. The priority is always forced to 7. When a single vector is
loaded, the .FETCH code completely ignores the PS word specified,
setting the value 340 into the vector PS word.

The macro .DRBEG contains an optional fifth parameter that points to
the table.

.DRBEG name,vec,dsiz,dstat,vtbl
where:

vtbl is the name of a table of vector triplets 1in a driver
requiring multiple vectors.

For example:

.DRBEG PC,PCVEC,PCDSIZ,PCSTS,PTBL

1.4.4.4 Error Logging - Error logging is an option provided to
enhance system reliability. Its effective use requires that
appropriate device handlers report on their activity so that a log of
system I/0 activity can be collected and analyzed. Both successful
and unsuccessful transfers are logged. Section 1.6 describes error
logging in detail. Section 1.6.3.3 describes how to call the error
logger from a user-written device handler.

1.4.4.5 Extended Memory Support for Handlers - RT-11 supports systems
with 128K words of memory. All device handlers, both NPR
(non-processor request) and programmed transfer, support extended
memory. RT-11 has a set of subroutines that are available to all
drivers. There are three routines that move a byte to or from the
user buffer or move a word to the user buffer for programmed transfer
devices. Another routine converts the buffer address information
supplied in the gqueue element into an 18-bit physical address for NPR
devices.

The queue element size for unmapped systems is seven words. However,
the queue element size is ten words in the mapped (XM) monitor. The
.QELDF macro supplies the queue element offset symbolics and queue
element byte size for the appropriate implementation (mapped or
unmapped) , provided the symbol MMGST is correctly defined before
.QELDF is invoked.

The queue element format in the XM monitor is essentially an extension
of the unmapped format. The queue element in the XM monitor requires
three additional words. One additional word is required to pass the
user buffer address to the handler. The other two words are unused
and provided for future expansion without another change in I/O gqueue

element size. The gqueue element has the following format in the XM
monitor:

I/0 PROGRAMMING CONVENTIONS

BYTE
SYMBOLIC OFFSET CONTENTS
Q.LINK 0 Link to next element
Q.CSwW 2 Pointer to channel status word
Q.BLKN 4 Block number
Q.FUNC 6 Special function byte
Q.JNUM 7 Job number
Q.UNIT 7 Unit number
Q.BUFF 10 Displacement to user buffer
Q.WCNT 12 Word count
Q.COMP 14 Completion routine address
Q.PAR 16 Page address register 1 bias to map user

buffer (XM only)

The monitor routines that support extended memory are called through
pointers in the handler. These pointers are reserved and labelled by
the .DREND macro. The monitor fills the pointers with correct
absolute addresses at fetch time.

The following are the call sequences and register conditions for
invoking the extended memory handler support routines in the XM
monitor:

1. Convert Mapped Address to Physical Address

The monitor routine $MPPHY (Convert Mapped Address to
Physical Address) is available to NPR device handlers. It
converts the virtual buffer address supplied in the queue
element into an 18-bit physical address that is returned on

the stack.
Call: JSR PC,@$MPPTR
Inputs: RS Contains pointer to Q.BUFF in queue
element.
Outputs: 2(SP) Second word on stack contains high

order two bits of physical address
in bit positions 4 and 5.

(SP) First word on stack contains low
order 16 bits of physical address.

RS Contains pointer to Q.WCNT in gqueue
element.

2. Move Byte to User Buffer

The routine $PUTBYT in the resident monitor is available to
programmed transfer device handlers to transfer a byte passed
on the stack to the wuser buffer. The buffer address in
Q.BUFF in the queue element is updated and mapping register
overflow is detected and adjusted. The byte count is not
modified.

1-18

I1/0 PROGRAMMING CONVENTIONS

Call: JSR PC,@$SPTBYT
Inputs: (SP) First word on stack contains byte of
data to be transferred.
R4 Contains pointer to Q.BLKN in queue
element.

Outputs: Byte is removed from stack.
Buffer pointer is updated.
R4 is unmodified.

3. Move Byte From User Buffer

The routine SGETBYT is the complement of $PUTBYT. A byte is
extracted from the user buffer and returned on the stack.
The buffer pointer is updated, but the Dbyte count 1is not
modified.

Call: JSR PC,@$GTBYT

Inputs: R4 Contains pointer to Q.BLKN in
current gueue element.

Outputs: (SP) First word on stack contains byte of
data from user buffer.

Buffer address (Q.BUFF) is updated.
R4 is unmodified.

4. Move a Word to User Buffer

The $PUTWRD routine is available through the $PTWRD pointer
and moves a word supplied on the stack to the user buffer.
Its anticipated uses are in handlers for analog devices and
to return status information.

Call: JSR PC,@S$SPTWRD

Inputs: (SP) First word on stack contains word of
data to move.

R4 Contains pointer to Q.BLKN in queue
element.

Outputs: Word of data is removed from stack.
Q.BUFF is updated.
R4 is unmodified.

5. The .DREND macro generates a fifth pointer, S$RLPTR, which
points to the monitor routine S$RELOC. This routine is
reserved for use by DIGITAL software only.

1.4.4.6 Device Time-out Support - A SYSGEN option adds device
time-out support to the monitor. This option permits device handlers
to do the equivalent of a mark time without doing a .SYNCH request.
Data transfers can be timed, and the driver can take action if the
transfers do not complete in the expected time interval.

This feature 1s not used by any of the RT-11 device handlers.

However, it is used by the multi-terminal monitor when the
multi-terminal time-out option or remote D21l lines are selected

1-19

I/0 PROGRAMMING CONVENTIONS

during SYSGEN. In these two cases, the device time-out support is
automatically included in the monitor during SYSGEN. The device
time-out option is also required for DECNET applications. The user
must specifically request it in the SYSGEN dialogue when he builds a
monitor for a DECNET application.

Two macros can be used only within a device handler. The macros,
-TIMIO and .CTIMIO, permit the scheduling and cancelling of a mark
time request. They can be issued from the entry point of the handler,
from interrupt 1level, or from a time-out completion routine. The
macros are contained in the system macro library, SYSMAC.SML.

To schedule a mark time from a handler:

.TIMIO tbk,hi,lo

where tbk is the address of a seven-word timer block containing the
following:

Word Contents

0 hi order time
2 lo order time
4 link to next queue element; 0 if none
6 owner's job number
10 owner's sequence number
12 -1 if system timer element
-3 if .TWAIT element in XM
14 address of completion routine; zeroed by the monitor when

the routine is called to indicate that the timer block is
available for reuse.

The .TIMIO request schedules a completion routine to run after the
specified number of clock ticks have occurred. The completion routine
runs in user context (kernel mapping), associated with the job
specified in the timer block. Registers RO and Rl are available for
use. When the completion routine is entered, RO contains the seguence
number of the request that timed out.

To cancel a mark time from a handler:
.CTIMIO tbk

where tbk is the address of the seven-word timer block used in the
.TIMIO request being cancelled.

If the timer request has already timed out and been placed in the
completion gqueue, the .CTIMIO fails, since a timer request cannot be
cancelled after being placed in the completion gqueue. Failure to

cancel the gueue element is indicated by the C bit set on return from
the .CTIMIO request.

1.4.5 1Installing and Removing Handlers
The installation and removal of device handlers from the system is
done from the keyboard monitor. Two keyboard monitor commands,
INSTALL and REMOVE, make the temporary installation of a handler very
easy; no patching procedures are required.
The INSTALL command has the following form:

.INSTALL dd

where dd is the two-letter device (and file) name.

1-20 September 1978

1/0 PROGRAMMING CONVENTIONS

The INSTALL command searches the system device for a file named dd4.SYS
(or ddX.SYS for XM), extracts the device status word from the handler,
and updates the S$STAT, $PNAME and S$DVREC tables in the resident
monitor. The device can now be used without rebooting the monitor.

NOTE

INSTALL is effective only on the monitor
in memory. It does not permanently
modify the monitor file on the system
device. To permanently install a
handler, the system must be patched.
This requires patching the Radix-50 name
into $PNAME and the device status word
into $STAT. Another way is to include
the INSTALL command in the startup
indirect command file (STARTx.COM) that
is executed on every boot. (Note that
star tup indirect command files are
optional.) The monitor file can also be
re-SYSGENED.

1.4.6 Converting Handlers to V03 Format

A V02 format device handler requires some conversion to operate under
a V03 or later monitor. The conversion effort ranges from a short
patch to a complete re-edit, depending on how many new features the
user desires. Special device handlers require some extra effort to
support the new error reporting capability of the special device
interface. This conversion can be implemented in the following ways.

1.4.6.1 Patching a V02 Format Handler - A version V02 driver can be
patched to operate under a V03 or later monitor, provided the monitor
generated does not support extended memory, error logging or device
I/0 time-out. Four locations in block 0 of the handler file must be
patched to contain handler information essential to the operation of
the new .FETCH mechanism.

The four locations contain the handler size, device status word, the
device block size (that is, number of 256-word blocks on the volume),
and the SYSGEN options compatible with this handler. All handlers
have pointers to S$INTEN and $FORK and optional pointers to support
routines for the SYSGEN options at the end of the handlers, which are
initialized when the handler 1is .FETCHed. Since V02 handlers have
only the S$INTEN pointer, an extra word (two bytes) must be added to
the actual handler size when patching. The other two locations
contain the data normally present in the $STAT and $DVSIZ tables (the
$SDVSIZ table is eliminated in V03 and later releases of RT-11).

Location Contents
52 Handler size in bytes (plus 2 for $FORK pointer)
54 Device size in number of 256-word blocks
56 Device status word, as contained in $STAT table.
60 SYSGEN options, must be 0

1-21

I/0 PROGRAMMING CONVENTIONS

For example, to patch the V02C MT.SYS handler to function under the
V03 monitor:

.R PATCH

FILE NAME--

*MT.SYS <RET>

*52/ 0 4300 <LF>
54/ 0 0 <LF>

56/ 0 12011 <LF>
60/ 0 0 <RET>

*E

NOTE

This patch does not work with V03 or
later monitors having error logging,
extended memory or device time-out
support.

1.4.6.2 Source Edit Conversion of Handlers - A V02 format, non-system
handler can be converted to function with the V03 or later monitors
(without .FORK, error logging or extended memory support) by applying
a minimal set of edits to the device source. The two essential
changes are the addition of the four words described in the first

method to the handler .ASECT, and the addition of a dummy .FORK
pointer to the end of the handler.

The faster method is to directly edit in the .ASECT and extra word.
The better method is to replace the handler header with the .DRBEG
macro and insert the .DREND macro at the end of the handler. No
problems will be encountered if standard RT-11 naming conventions were
used in writing the handler. Neither of these methods takes full
advantage of the new features of RT-11.

NOTE

To convert a version 2C device handler
to version 3, change the version 2C
device handler so that it sets the EOF
bit in the channel status word in the
proper sequence. (See Section 1.4.1.)
If this change 1is not made, the last
block of data may be lost during a data
transfer.

a. (Fast Method)

Step 1: Define the device handler size, block size and
status word.

1-22 September 1978

I/0 PROGRAMMING CONVENTIONS

For example:

RKDSIZ = 0
RKSTS = 20003

The driver size is usually defined at the end of the handler
using the convention:

RKHSIZ = .-RKSTRT
Step 2: Install the handler .ASECT.
For example:
.ASECT
.=52
.WORD RKHSIZ
.WORD RKDSIZ

.WORD RKSTS
.WORD 0

1-22.1 September 1978

1/0 PROGRAMMING CONVENTIONS

Add a .CSECT after the .ASECT if one is not already 1in the
existing handler code.

Step 3: Add a dummy $FKPTR to the end of the handler.

For example:

SINPTR: .WORD 0
RKHSIZ = .-RKSTRT

becomes

$INPTR: .WORD 0
SFKPTR: .WORD 0
RKHSIZ = .-RKSTRT

b. (Best Method)

Perform steps 1, 2, 3, 4 and 7 of the full conversion method.

1.4.6.3 Full Conversion of Device Handlers - To take advantage of the
new features, the handler must be modified. Inserting the .DRBEG,
.DRAST, .DRFIN and .DREND macros makes conversion to V03 format
easier, but it does not supply the functional conversion necessary to
support error logging or extended memory. Difficulty of functional
conversion varies with the complexity of the device and its handler.

To make the full conversion of a device handler, perform the
following:

1. Insert an .MCALL containing the handler macros that are to be
used in converting the handlers.

For example:

.MCALL .DRBEG, .DRAST
.MCALL .DRFIN, .DREND,.QELDF
.QELDF

2. Insert the default system build options:

For example:

.IIF NDF MMGST,MMGST=0
.IIF NDF ERLS$G,ERLS$G=0
.IIF NDF TIMSIT,TIMSIT=0

3. Define the device block size and status words using the
proper mnemonics.

For example: RKDSIZ = 0
RKSTS = 20003

4. Replace the handler header with the .DRBEG macro.

For example: RKSTRT: .WORD 200
.WORD RKINT-.
.WORD 340
RKSYS:
RKLQE: .WORD 0
RKCQE: .WORD 0

I/0 PROGRAMMING CONVENTIONS

is replaced by the macro:
.DRBEG RK,200,RKDSIZ,RKSTS

Replace the interrupt entry and abort entry points with the
.DRAST macro (optional, but recommended).

For example: replace the code:

BR RKDONE ;ABORT ENTRY POINT
RKINT: JSR R5,@$INPTR ;s INTERRUPT ENTRY POINT
.WORD “C<PR5>&340

with the macro:
.DRAST RK,5,RKDONE

Replace the 1I/0 completion code with the .DRFIN macro
(optional, but recommended).

For example:
replace the code:

MOV PC,R4

ADD RKCQE-. ,R4
MOV @#54,R5
JMP @270 (R5)

with the macro call:
.DRFIN RK

Replace the $INPTR location at the end of the handler with
the .DREND macro.

For example: replace:

S$INPTR: .WORD 0
RKHSIZ = .-RKSTRT

with:
.DREND RK

The handler can now be assembled and tested. Assembly errors
can occur if RT-11 naming conventions were not followed (for
example, if the queue pointers were not originally named
RKLQE and RKCQE, the start of the CSECT was not named RKSTRT,
and the interrupt entry point was not named RKINT). The
handler should now function correctly under the SJ and FB
monitors, provided that the monitors have not been SYSGENed
to include any other handler features like error logging and
device time-out.

Extended memory conversion can now be done, if desired.

a. NPR (Non-Processor Request) Devices
Assumptions: R5 is used to point to the queue element.
Procedure: The buffer address supplied in the queue

element in a mapped monitor is really in two parts.
Q.BUFF contains the buffer displacement in the virtual

I/0 PROGRAMMING CONVENTIONS

address space defined by Q.PAR. This must be converted
to an 18-bit physical address, which is done by a call
through $MPFTR. Two words are returned on the stack,
containing the low order 16 bits and high order two bits.

For example:

RKCS = nnnnn2 ; CONTROL AND STATUS
;s REGISTER
RKWC = nnnnn4 ;WORD COUNT REGISTER
RKBA = nnnnné ; UNIBUS ADDRESS REGISTER
MOV #103,R3 ;ASSUME A WRITE
MOV #RKBA,R4 ;R4 -> BUFFER ADDRESS REG
MOV (R5) +, (R4) ;MOVE BUFFER ADDRESS
MOV (R5)+,-(R4) ;s MOVE WORD COUNT

is replaced with the conditional code:

KRKCS = nnnnn2 ; CONTROL AND STATUS
; REGISTER
RKWC = nnnnn4 ;WORD COUNT REGISTER
RKBA = nnnnn6 ;UNIBUS ADDRESS REGISTER
.IF EQ MMGST
.IFTF
MOV #103,R3 ;ASSUME A WRITE
MOV #RKBA ,R4 ;R4 -> BUFFER ADDRESS REG
.IFT ; IF UNMAPPED
MOV (R5) +,0@R4 ;s MOVE BUFFER ADDRESS
; TO RKBA
.IFF ; IF MAPPED
JSR PC,@$MPPTR ; CONVERT TO 18 BITS
MOV (SP)+,0@R4 ;MOVE LOW 16 BITS TO RKBA
.IFTF ; IN ANY CASE,
MOV (R5) +,-(R4) ;MOVE WORD COUNT TO RKWC
.IFF ; IF MAPPED
B1S (SP)+,R3 ;SET IN HI ORDER
;ADDRESS BITS
.IFTF ; IN ANY CASE
6S$: MOV R3,-(R4) ;START THE OPERATION
RTS PC ;AWAIT INTERRUPT
.ENDC

For NPR devices which may be interfaced to a mass bus
controller, the address extension bits must be placed in
bits 8 and 9 of the control and status register rather
than bits 4 and 5. For these devices (such as RJS03/04)
the code above must be modified to shift the bits into
place.

.IFF ; IF MAPPED
JSR PC,@SMPPTR ; CONVERT TO 18 BITS
MOV (SP) +,@R4 ;MOVE LOW 16 BITS
ASL (SP) ;SHIFT HI BITS INTO PLACE
ASL (SP) :
ASL (SP) ;
ASL (SP) ;
BIS (SP)+,R3 ;SET IN HI ORDER BITS

1-25

I/0 PROGRAMMING CONVENTIONS

Programmed Transfer Devices
Assumptions: R4 points to Q.BLKN in the gueue element.

Procedure: Programmed transfer devices must directly
move the data to or from the user buffer. This is
usually done a byte or word per interrupt, but sometimes
a complete buffer is moved, as in the ZR handler.

To move data the handler must save the contents of the
kernel mapping register* (page address register 1), move
Q.PAR to kernel page address register 1, and then move
one byte or word indirectly off the contents of Q.BUFF.
If more than 4K-32 words of data can be moved, the Q.BUFF
address must be checked for overflow each time it is
updated, since a page address register can map only 4K
words of memory. A simple approach is to use one of the
monitor routines provided.

For example, the original handler contains the code:

BYTCNT = 6 ;OFFSET TO BYTE COUNT

BUFF = 4 ;OFFSET TO BUFFER ADDRESS

MOV PPCQE ,R4 ;R4 -> Q.BLKN

MOVB BUFF (R4) ,@#PPB sMOVE A CHARACTER

INC BUFF (R4) ;UPDATE BUFFER ADDRESS
INC BYTCNT (R4) ;BUMP BYTE COUNT

BEQ PPDONE ;IF EQ DONE

which becomes the conditionalized code:

BYTCNT = 6 ;OFFSET TO BYTE COUNT
BUFF = 4 ;OFFSET TO BUFFER ADDRESS
MOV PPCQE, R4 ;R4 -> Q.BLKN
.IF EQ MMGST ; IF UNMAPPED
MOVB BUFF (R4) ,@4#PPB ;MOVE CHARACTER
INC BUFF (R4) ; UPDATE BUFFER ADDRESS
.IFF ; IF MAPPED
JSR PC,@$GTBYT ;GET A CHARACTER
MOVB (SP)+,@#PPB ;PUT IT OUT.
.IFTF ;IN EITHER CASE,
INC BYTCNT (R4) ;BUMP BYTE COUNT
BEQ PPDONE ; IF EQ DONE

.ENDC

There are cases where the monitor subroutines cannot be
used. In those cases, the remapping of the kernel
mapping register (page address register 1) must be done
within the handler code.

*

For an explanation of mapping registers, refer to Chapter 3.

1-26

1/0 PROGRAMMING CONVENTIONS

The call to SGTBYT is equivalent to the following in-line
code sequence:

KISAR1 = 172342 ; KERNEL PAR1

MOV @#KISAR1l,- (SP) ; SAVE PARI1

MOV Q.PAR-Q.BLKN (R4) ,@#KISAR1l ;MAP TO USER BUFFER
MOVB @Q.BUFF-Q.BLKN (R4) ,@#PPB ;MOVE NEXT BYTE

MOV (SP)+,@#KISARIL ; RESTORE PAR1

INC Q.BUFF-Q.BLKN (R4) ;UPDATE BUFFER ADDRESS
BIT $40000,Q.BUFF-Q.BLKN (R4) ;OVERFLOWS 4K LIMIT?
BEQ 1$;IF EQ, NO

SUB #20000,Q.BUFF-Q.BLKN (R4) ;sADJUST DISPLACEMENT
ADD #200,Q.PAR-Q.BLKN (R4) ;AND PAR1 BIAS

1$:

1.4.7 Device Handler Program Skeleton Outline

The following code illustrates a device handler outline. In the
example the designation SK is used as the device name.

.TITLE SK V03.01

SK DEVICE HANILER

+IDENT /V03.01/

+SBTTL PREAMEBLE SECTION

+MCALL +QELDFs .DREBEG» .IRAST» DRFINs DREND»s .FORK
3 SYSGEN DEFAULT DEFINITIONS:

+IIF NDF MMGS$T, MMGST = O

+IIF NDF ERL$G» ERL$G = O

+IIF NDF TIMSIT, TIMSIT = O

3 DEVICE UNIBUS ADDRESSES:?

+IIF NDF SK$VEC, SKSVEC = 200 #SK VECTOR

+IIF NDF SK$CSKRs SK$CSR = 177514 $SK CONTROL STATUS REGISTER
SKER = SK$CSR+2 $SK EUFFER REGISTER
HDERR =1 #HARD ERROR ON CHANNEL

3 DEVICE STATUS INFORMATION:

SKDSIZ = 0 + DEVICE BLOCK SIZE

SKSTS = 20003 DEVICE STATUS WORD

3 DEFINITION OF Q ELEMENT SYMBOLICS?

+QELDF

WCNT = R.WCNT - Q.BLKN

BUFF = Q.BUFF - Q.BLKN

+SBTTL SET OFTIONS
+ASECT
« = 400
NOF
+RANSO /RANDOM/
+WORD <0 +.RNIIM-400>/24100000

+WORD 0 sEND OF LIST

1-27

O RNDM$

+SEBTTL

-

RET?

+SETTL

MOV
MOVE

MOV

RTS

I/0 PROGRAMMING CONVENTIONS

(FC)+sR3
SFyRO
R3ySKOFT
FC

HEADER SECTION

#GET NEW INSTRUCTION TO STORE
#CHANGE INST FOR SET OFTION
#STORE IT IN HANDLER EODY
DONE WITH SET OFTION CHANGE

+DRBEG SKySK$VEC,»SKDSIZ,SKSTS

MOV
ASL
EkCC
REQ
RIS
RTS

ENTRY FOINT FORM QUEUE MANAGER

SKCQREsR4
WCNT(R4)
SKERR
SKDONE

#100,@#SK$CSK

PC

#R4 - CURRENT QUEUE ELEMENT
#MAKE WORD COUNT A RYTE COUNT
#A READ REQUEST IS ILLEGAL

#A SEEK COMFLETES IMMEDIATELY
JENARLE INTERRUFTS

JEXIT AND WAIT FOR ONE

INTERRUFT TRAF FROCESSING

+DRAST SKy4,SKOONE

 INTERRUFT SERVICE:

+IF EQ MMGST

JIFTF

MOV
TST
EBMI
TSTE
BFL
CLR

SKCQRE,»R4
@#SK$CSR
RET
@#SK$CSR
RET
@#SK$CSK

FROCESS REMAINING COLE

SKNEXT ¢

JIFT

+IFF

+IFTF

SKOFT?

+ENDC

+FORK
TSTB
BFL
TST
BEQ

MOVE
INC

JSR
MOV

INC
MOV
NOF
MOVE
BR

SKFELK
@#SK$CSK
RET

WCNT (R4)
SKDONE

@RUFF (R4) yRS

BUFF (R4)

FCy@$GTBYT

(SF)+sRS

WCNT (R4)

#1777709RS

RS »@#SKERR
SKNEXT

4 —} CURRENT QUEUE ELEMENT

S DEVICE READY?
0 IF FLy EXIT AND WAIT

R

ER

YES IF MI» HANG UNTIL CORRECT
I

N

YES» DISAERLE INTERRUFTS

. W W W W e
. W wr W wr e
. € W W wr W

AT FORK LEVEL

sREQUEST FORK PROCESS

#READY FOR ANOTHR CHARACTER?
sBR IF NOT READY

JANY LEFT TO PRINT?

#NO IF EQ» XFER IS DONE

#GET A CHARACTER
s BUMP BUFFER FOINTER

*GET A CHARACTER
INTO RS

s BUMF CHARACTER COUNT

7 BIT ASCII

sRANDOM OFTION BY SET COMMAND
sFUT IT OUT TO DEVICE

#» TRY FOR ANOTHER

I/0 PROGRAMMING CONVENTIONS

«SBTTL I/0 COMFLETION SECTION

SKERR: RIS $HDERR»@Q.CSW-Q . BLKN(R4)
$SET ERROR BIT IN CHANNEL
SKIONE: BIC #100y@#SK$CSK sDISARLE INTERRUFTS
+DRFIN SK #GO TO I/0 COMFLETION
SKFBLK? .WORD 050+050 # FORK QUEUE ELEMENT
+DRENDII SK
+END

1.4.8 Programming for Specific Devices

This section discusses specific devices that have operating and/or
programming techniques and features unique or different from most
peripheral devices. Included in this category are the following:

1. Magtape - TMl1l-Type Controllers (TMAll/TS03,TM11/TUl0,TMB11)
TJUl16-Type Controllers (TJUl6/TM02/TU16,TJE16/TM03/
TE16,TU45).

2. Cassette - TAll
3. Diskette - RX11/RXV11l RX01l; RX211/RXV21 RX02
4. Disk - RK61l1l RKO6,RK07; RL11/RLV11 RLO1l

In addition to these devices, mention 1is also made of some other
devices and other device characteristics.

1.4.8.1 Magnetic Tape Handlers (MM,MT) - The magtape device has a
file structure that 1is different from other RT-11 devices. The
magtape device handler is capable of supporting a file structure
compatible with ANSI magnetic tape labels and tape format. This
allows the user full access to the controller without being totally
familiar with the device.

NOTE

It should be noted that RT-11 magtape
file structure support is only
compatible among systems that support
DEC and ANSI standards for magtape
labels and tape format. Hence, DOS
formatted magtape cannot be read or
written.

The handler consists of two versions. One version is the hardware
handler (MMHD.SYS,MTHD.SYS), which 1is designed to accept hardware
requests only. This type of handler is useful in I/0 operations where
no file structure exists. Any file-structure request to the hardware
handler results in a monitor directory I/0 error. The wuser accesses
the hardware handler with a non-file-structured .LOOKUP (see Chapter 2
for details), special function .SPFUN, .READx/.WRITx*, and .CLOSE
requests. The hardware handler contains code to accomplish basic

The term .READx/.WRITx refers to the following group of programmed
requests: .READ, .READC, .READW, .WRITE, .WRITC, WRITW.

*

1-29

I/0 PROGRAMMING CONVENTIONS

input/output functions on physical blocks, tape positioning, error

recovery and other hardware functions. The other version of the
magtape device handler combines the hardware handler with a
file-structure module to produce MM.SYS and MT.SYS. The

file-structure module provides the handler with the capability to
accept file-structure requests. It is designed so that it can be used
with any hardware handler. The magtape handler supports up to eight
drives and one controller, and operates under all RT-11 monitors. The
file-structure version is desirable in most circumstances and is the
only one that works with system utilities. The hardware handler is
for users with special requirements. Both file-structure and hardware
handlers are delivered on the system disk distribution media. The
file-structure handler is distributed supporting drives 0 and 1. More
drives can be supported as a SYSGEN option. The file-structure
handler is the standard version (MT.SYS or MM.SYS) and the hardware
handler must be renamed to be used, as shown below:

.REMOVE MT !Remove from device table
.RENAME/SYS MT.SYS MTFS.SYS !Save file-structure handler

-.RENAME/SYS MTHD.SYS MT.SYS !Create new magtape handler

File-Structure Handler Functions

The file-structure handler searches through sequence numbers. The
file-structure handler performs file searches using the file sequence
number (FSN) to determine the tape's current position relative to
where the tape has to go to be at the desired file. When the handler
receives a sequence number, it compares it to the known position
according to the following algorithm:

1. when the file sequence number for the file desired is greater

than the current position, the tape simply searches in a
forward direction.

For example:

Current Position File Desired
FSN=1 FSN=2

Tape moves forward from its position at the tape mark
after file #1 to the tape mark at the start of file #2.

2. When the file sequence number for the file desired 1is less
than the current position of the tape by greater than two
and/or less than five files from the beginning of tape (BOT),
the tape 1is rewound and searching begins in the forward
direction. Otherwise, the tape is searched in the backward
direction. This procedure utilizes the optimum seek time for
file searching on magtape.

For example:

Current Position File Desired
Casel: FSN=2 FSN=1

The tape drive leaves its position at the tape mark for
file #2, and rewinds to the beginning of tape; it then
moves forward to the tape mark at the start of file #1.
Case2: FSN=9 FSN=7

The tape drive rewinds to the beginning of tape and
searches the tape in the forward direction.

1-30

I/0 PROGRAMMING CONVENTIONS

3. When the file sequence number for the file desired 1is the
same as the current position or one file away from the

current position, the tape 1is searched 1in the backward
direction.

For example:

Current Position File Desired
Case 1: FSN=6 FSN=6

The tape drive leaves its position at the tape mark at
the end of file #6, and backspaces to the tape mark
following file #5.

Case 2: FSN=5 FSN=4

The tape drive leaves its position at the tape mark at
the end of file #5, and backspaces to the tape mark
following file #3.

If the user .UNLOADs or .RELEASEs the handler, the file position is
lost for the file-structure handler. Hence, in this situation the
tape moves in a backward direction until it locates the beginning of
tape or a label from which the tape's position can be determined.

The file-structure handler searches through file names. The routine
to match file names uses an algorithm that enables recognition of file
names and file types written by other DIGITAL systems. The method for
doing this applies 1in the algorithm discussed below to the file
identifier field, which translates the contents to a recognizable file
name. This file name is matched to a file name translated into a
Radix-50 format.

The format is:

filnam.typ
where
filnam is a legal RT-11 file name left justified 1into a six
character field and padded with spaces, if necessary.
typ §§ idfile type left justified into a three-character
ield.

The algorithm used is compatible with the DIGITAL standard. It allows
tapes written under RT-11 V02C and earlier versions to be read by V03
and later versions and matched (these tapes don't have a dot to
separate the file name from the file type). RT-11 format tapes are

detected by the presence of "RT1l" in character positions 64-67 of the
HDR1 label.

The algorithm is as follows:
1. Clear the character count (CC).

2. Look at the first character in the file name; if it is a dot
then do the following:

a. Mark a dot found.

b. When CC < 6 then insert spaces and increment the CC until
CC = 6.

c. When CC > 6 then delete characters and decrement the CC
until CC = 6.

1-31

I/0 PROGRAMMING CONVENTIONS

When CC = 6 and if "RT11" is found in character positions
64-67 of the system code field, then insert a dot in the
translated name, mark the dot found, and increment CC.

Move the character into the translated file name and point to
the next character.

Increment the CC.
When CC < 9 go back to step 2.

Check the dot-found indicator. If a dot was not found, back
up four characters and insert ".DAT" for the file type.

Now perform a character by character comparison between the
file name being looked for and the file name that was just
translated from the file identifier field in the HDR1l label.
When they match exactly, then the file name is found.

-ENTER Request - The .ENTER requests an HDRl1 label (file
header 1label) and tape mark to be written on tape and leaves
the tape positioned after the tape mark. The .ENTER request
initializes some internal tables including entries for the
last block written and current block number. The last block
or file on tape is always the most recent one written. The
information for the internal tables and entries for the 1last
written block is correct unless a .SPFUN request is performed
on that channel. Normally, files opened with an .ENTER do
not have .SPFUN requests performed on them. An exception to
this rule is the case where a non-standard block size is to
be written (a block size that is not 512 bytes long). To
write a non-standard block, the file must be opened with an
.ENTER request; then an .SPFUN write request must be
performed. The file must be closed with a .CLOSE request
after the operation is complete. If a file search is to be
performed, the file is opened with a .LOOKUP request. The
.ENTER request has the following form:

.ENTER area,chan,dblk,,segqnum

Table 1-1
Sequence Number Values for .ENTER Requests

Segnum File name Action Taken Position
argument
>0 not null |Position at file | Found: tape is
sequence number and do | ready to write
a .ENTER Not Found: tape

is at logical end
of tape (LEOT).
LEOT is an
end-of-file 1
label followed by
two tape marks.
LEOT is different
from the physical
end of tape.

(continued on next page)

I/0 PROGRAMMING CONVENTIONS

Table 1-1 (Cont.)
Sequence Number Values for .ENTER Requests

Segnum File name Action Taken Position

argument

0 not null |Rewind tape and search | Found: tape is
tape for file name. | positioned before
If found then give | file
error. If not found |Not Found: tape
then enter the file |is positioned

ready to write

-1 not null |position tape at | tape is
logical end of tape | positioned ready
and enter file

-2 not null [Rewind tape and serach | tape is
tape for file name. | positioned ready
Enter file at found | to write
file or logical end of
tape, whichever comes
first.

0 ; null do a non-file- | tape 1is rewound

| structured .LOOKUP
—L

The .ENTER request returns the following errors.

Byte 52 Code Explanation
0 Channel in use
1 Device full. 1Issued if physical end of tape
(EOT) detected while writing HDR1l. Tape is
positioned after first tape mark following

the last end-of-file 1 label on the tape.

2 Device already in use. Issued if magtape
already has a file open.

3 File exists, cannot be deleted.

4 File sequence number not found. Tape 1is

positioned the same as for device full.

5 Illegal argument error.

A seqnum argument in

the range of -3 through -32,767 was detected.
A null file name was passed to enter.

The .ENTER request issues a directory hard
occur while entering the file.

error if errors

.LOOKUP Requests - The .LOOKUP request causes a specific HDRI1

label

to be searched and read.
is left positioned before the first data block of
The .LOOKUP request has the following forms:

.LOOKUP area,chan,dblk,segnum

1-33

After this request, the tape

the file.

I/0 PROGRAMMING CONVENTIONS

Table 1-2
Sequence Number Values for .LOOKUP Reguests
Segnum File name Action Taken Position
argument
-1 null do a non-file- Tape is not moved.
structured .LOOKUP
>0 null do a file-structured If operation
.LOOKUP on the file succeeds, tape is
sequence number ready to read 1lst
data block.
If the file
sequence number is
not found, tape is
at logical end of
tape.

0 not null |rewind to the If found, tape is
beginning of tape, ready to read lst
then use file name data block. If
to do a file- file name not
structured .LOOKUP found, tape is at

logical end of
tape.
-1 not null |don't rewind; just If found, tape is
do a file-structured ready to read 1lst
.LOOKUP for a file data block. If
name not found, tape is
at logical end of
tape.
>0 not null |position at file If found, tape is
sequence number and ready to read 1lst
do a file-structured data block. If
. LOOKUP. If file not found, tape
name does not match is at logical end
file name given, of tape.
give error.
NOTE
If a channel is opened with a
non-file-structured .LOOKUP (file name
null and file sequence number=0 or -1),
-READXx requests use an implied word
count equal to the physical block size

on

word count to determine the
tape.

on

size

the tape and .WRITx requests use the

the
and

read

block

size

This convention is used
instead of using 512 as a default block

identical
or write

(blk=0).

doing blocking/deblocking.
This request is almost
.SPFUN
report any errors

to a
which does not

Also note

that the error and status block must not
be overlaid by the USR.

1-34

I/0 PROGRAMMING CONVENTIONS

The .LOOKUP request returns the following errors.

Byte 52 Code Explanation
0 Channel in use
1 File not found. Tape is positioned after the

first tape mark following the last end of
file on the tape.

2 Device in use. 1Issued if the magtape has a
file already open.

5 Illegal argument error. A segnum argument in
the range of -2 through -32,767 was detected.
A .LOOKUP to the hardware handler must have a
positive seqgnum.

This request issues the directory hard error 1in the same
manner as the .ENTER request discussed previously.

NOTE

The term .READx/.WRITx refers to the following group
of programmed requests: .READ, .READC, .READW,
WRITE, .WRITC, .WRITW.

.READx Requests - The .READx request reads data from magtape
in blocks of 512 bytes each. This group of requests is
described here for files opened with the .ENTER and
file-structured .LOOKUP requests. In addition to this
description, there are .READx and .WRITx descriptions
appropriate to non-file structured .LOOKUP's (see Section 8
under Hardware Handler Functions). If a request 1is issued
that is less than 512 bytes, then the correct number of bytes
is read. 1f a request is greater than 512 bytes, the handler
performs the request with multiple 512 byte requests (or less
for the last request if the number of bytes does not equal an
exact multiple of 512). The .READx is valid in a file opened
with a .LOOKUP request. It is also valid in a file opened
with a .ENTER request provided the block number requested
does not exceed the last block written (0 code returned). 1If
a tape mark is read, the routine repositions the tape so that
another request causes the tape mark to be read again. When
a .CLOSE request 1is 1issued to a file opened by a .ENTER
request, the tape is not positioned after the last block
written. This could cause loss of information if the user
issued a read for a block that was written before the last
block and fails to reread the last block, thereby positioning
the tape at the end of the data.

The rules for block numbers are as follows:

a. .READx - When a .LOOKUP is used (to search file) with
this request, the tape drive tries to position the tape
at the indicated block number. When it cannot, a 0 (end
of file code) error is issued, and the tape is positioned
after the last block on the file.

I/0O PROGRAMMING CONVENTIONS

b. .WRITx and READx - On an entered file, a check is made to
determine if the block requested is past the last block
in the file. 1If it is, the tape is not moved and the 0
error code is issued.
This request has the form:
.READx area,chan,buf,wcnt,blk[,crtn)

The .READx request returns the following errors.

Byte 52 Code Explanation
0 Attempt to read past a tape mark. Also
generated by a block that is too large.
1 Hard error occurred on channel.
2 Channel not open.

-WRITx Requests - The .WRITx request writes data to magtape
in blocks of 512 bytes. If a request is issued that is less
than 512 bytes, the tape drive forces the writing of 512
bytes from the given buffer address. If a request is issued
that is greater than 512 bytes, then the handler performs
multiple 512 bytes per block requests.

The .WRITx request is only valid in a file opened with a
-ENTER or a non-file-structured .LOOKUP. The .WRITx request
has the following form:

.WRITx area,chan,buf,wcnt,blk|,crtn]

The .WRITx request returns the following errors.

Byte 52 Code Explanation

0 End of tape (means that the data was not
written but the previous block is valid and
the file can be .CLOSEd). Also issued if the
block number is too large.

1 Hard error occurred on channel
2 Channel not open

It should be noted that no operation other than a write
operation can be performed beyond the last block written on
tape (see Figure 1-3). Note that the head is positioned in a
gap between operations.

a. In example 1, blocks A, B and C are written on the tape.
Now the head 1is positioned in the gap immediately
following block C. Any forward operation of the tape
drive except write commands (that is, write, erase gap
and write, or write tape mask) yields undefined results
due to hardware restrictions.

b. In example 2, the head is shown positioned at beginning
of tape after a rewind operation. Now successive read
operations can read blocks A, B and C. The head is 1left
positioned as shown in example 3. Note that this is the
same condition as shown in example 1, and all
restrictions indicated in case 1 above are applicable.

1-36

I/0 PROGRAMMING CONVENTIONS

c. In example 4, a rewind operation was performed followed
by a write. New data (block D) replaced the old data
(block A) data and now the head is positioned in the gap
immediately following block D. Since block D is now the
last block written on tape (in the current time frame),
blocks B and C cannot be read and this data cannot be
recovered. As in previous examples, the magtape handler
can only accept write requests at this point.
5. .DELETE and .RENAME Requests - The .DELETE and . RENAME
requests are illegal operations on magtape, and any attempt
to execute them results in an 1illegal operation code (2)
being returned in byte 52.
27
EXAMPLE 1 // i GAP /
(WRITE)
//A 7
Jay HEAD
]
L-———-NO FORWARD
REQUESTS FROM
THIS POINT
8OT / (EXCEPT WRITE)
EXAMPLE 2 GAP //// GAP GAP A/%/¢
(REWIND/READ) |
| L // Aé Z
L --HEAD
L--ANY REQUEST FROM
THIS POINT
V7 7%
EXAMPLE 3 BOT EZZV
(HEAD POSITION GAP GAP GAP
AFTER READ) | ////
L %, %
4} HEAD
L ——— SAME AS
EXAMPLE 1
BOT ZZV //7 ;>/
EXAMPLE 4 | GAP GAP GAP
(REWIND/WRITE) | / / %
L 7
? HEAD
L-— NO FORWARD REQUESTS
FROM THIS POINT
(EXCEPT WRITE)
Figure 1-3 Examples of Operations Performed After the Last

6.

Block Written on Tape

.CLOSE Requests - The .CLOSE request operates in the
following three ways:
a. When a file is opened with a .ENTER request, the file is

closed by writing a tape mark, an end-of-file 1 label and
then three more tape marks. In this operation, the tape
drive is left positioned just before the second tape mark
at logical end of tape.

I/0 PROGRAMMING CONVENTIONS

b. When a file is opened with a file-structured .LOOKUP, the
tape 1is positioned after the tape mark following the
end-of-file 1 label for that file.

c. When a file is opened with a non-file-structured .LOOKUP,
no action is taken and the channel becomes free.

The .CLOSE request has the following form:
.CLOSE chan

This request issues a directory hard error if a malfunction

is detected. The error can be recovered with the .SERR
request.

Asynchronous Directory Operations Request - The asynchronous
directory operation request performs directory operations
without the USR. This request can be used for long tape
searches without tying up the USR. It is provided for users
of multi-user systems who do not want to wait for the 1long
tape searches that can occur during .ENTER and .LOOKUP
requests. It is also useful and desirable for FB users who
do not want to lock the USR. This request allows the .ENTER
and .LOOKUP requests to be issued after a non-file-structured
.LOOKUP has been issued to assign a channel to the magtape
handler. 1Indeterminate results occur if this request is
issued for a channel that was not opened with a
non-file-structured .LOOKUP. The .SPFUN request has the
following form:

.SPFUN area,chan,-20.,buf,,blk

where:
-20. (decimal) is the code for the synchronous
directory request.
buf is the address of a seven-word block in the
following format:
Word Meaning
0 through 2 Radix-50 representation of the file
name.
3 Code which is one of the following:
LOOKUP=3
ENTER=4
4 Sequence number value. See the
corresponding sections for .LOOKUP or
.ENTER for complete information on the
interpretation of this value.
5,6 Reserved

The blk argument is the address of a four-word error and
status block wused for returning .LOOKUP and .ENTER errors
that are normally reported in byte 52. Only the first word
of blk is used by this request. The other three words are
reserved for future use and must be zero. When the first
word of blk 1is 0, no error information is returned. This

block must always be mapped when running in the extended
memory monitor.

1-38

I/0 PROGRAMMING CONVENTIONS

Example:
1 +TITLE ASYNCHRONOUS DIRECTORY OPERATION REQUEST EXAMPLE X01.01
!
3 +MCALL .LOOKUP+.SPFUN/+.CLOSE» .PRINT, .EXIT
4
S sDEF INITIONS
é
7 000000
8
9 177754 ASYREQ = -20. $ASYNCHRONOUS REQUEST CODE
10 000003 LOOKUF = 3 $LOOKUP CODE FOR ASYNCHRONOUS REQUEST
11 000004 ENTER = 4 JENTER CODE FOR ASYNCHRONOUS REQUEST
12 000000 CHAN = /] +USE CHANNEL O
13 000001 FNF = 1 $FILE NOT FOUND ERROR
14 000000 FSN = 0 $USE O FOR FILE SEQUENCE NUMBER
13
16 IMACTAPE HANDLER IS ASSUMED TO BE LOADED.
17
18 000000 START, .LOOKUP $AREA»8CHAN> ONFSBLK $0FEN A CHANNEL FOR THE NEXT REQUEST
19 000024 103433 BCS LOOKER $ERROR OCCURRED
20 000026 +SPFUN OAREA»$CHAN»SASYREQ» $COMBLK » » SERRBLK #DO A LOOKUF
21 000074 103012 BCC FOUND #NO ERRORS MEANS FILE WAS FOUND
22
23 000076 G22767 000001 000104 CHP S$FUF yERRBLK $FILE NOT FOUND ERROR?
24 000104 001411 BEQ NOTF IND iYES
25 000106 012700 000320° MOV SASYERR,»RO $NO
26 000112 000410 BRR CLOSE
27
28 000114 012700 000220° LIOrRER: MOV $LOOERR,RO iNFS »LOOKUF ERROR
29 000120 000405 DR CLOSE
30
31 000122 012700 000264° FIUND: MOV $0K/,RO #FILE FOUND MESSAGE
32 000126 000402 BR CLOSE
33
34 000130 012700 000300° NITFND: MOV ®NOK »RO $FILE NOT FOUNID' MESSAGE
33
36 000134 CLOSE: .PRINT #PRINT MESSAGE POINTED TO BY RO
37 000136 «CLOSE $CHAN
38 000144 JEXIT
39
40 1DA"A AREA
41
42 000146 AREA: +BLKW) +EMT ARGUMENT AREA
43 000162 032140 NFSBLK: .RADSO /MT/ $USE THIS TO OPEN MAGTAPE NON FILE STRUCTURED
44 000164 000000 000000 000000 +WORD 0+0+0
45 000172 023364 0353665 100370 COMBLK: .RADSO /FILNAMTYP/ $THIS IS THE FILE NAME WE’'RE LOOKING FOR
46 000200 000003 +WORD LOOKUF $THIS IS THE ASYNCHRONOUS OPERATION COLE FOR LOORNUF
47 000202 000000 «WORD FSN iTHIS 1S THE FILE SEQUENCE NUMEBER FOR THE LOOKUF
48 000204 000000 000000 +WORD 0:0 $RESERVED (MUST BE ZERO)
49 000210 000000 000000 00C000 ERRBLK: .WORD 0+0+0+0 #PICK UF ERRORS HERE
000216 000000
S0
51 i MESSAGE AREA
52
53 000220 116 117 116 LOOEKRR: .ASCIZ 'NON FILE STRUCTURED .LOOKUF FAILED.’
54 000264 106 111 114 OK? +ASCIZ ‘FILE FOUND.’
55 000300 106 111 114 NOK: .ASCIZ 'FILE NOT FOUND.’
56 000320 101 123 131 ASYERR: .ASCIZ ‘ASYNCHRONOUS REQUEST ERROR.’
57
58 000000 +END START

Hardware Handler Functions

The hardware handler functions can be used with or without the file
structure module.

1.

Issuing hardware handler calls in a magtape file

The magtape handler is designed to perform two distinct types
of access. One type of access 1is file oriented and it
attempts to make the magtape act 1like a disk; in other
words, to make the magtape device be as device independent as
possible. The other type of access allows access to the
hardware commands such as read, write, space, etc., but the
user doesn't have to know whether the magtape is a TM1l1l or
TJU16.

When accessing magtape using file oriented commands, the
handler keeps track of the file sequence number where the
tape is positioned. Tape movement during file searches can
be optimized.

When accessing data in a magtape file using the .READx/.WRITx
requests, the magtape handler keeps track of the current
block number as well as the 1last block number accessible.
The block number argument can be used to simulate a random
access device even on .ENTERed files.

1-39

I/0 PROGRAMMING CONVENTIONS

The two access methods described above can be combined; that
is, it is possible to use hardware handler tape movement
commands on a magtape file. However, doing so causes the
following to happen.

a. When the first hardware handler command is received, the
stored file sequence number and block number information
described above are erased and are not reinitialized
until a .CLOSE and another file opening command have been
performed. Note that the .CLOSE moves and, 1in the
.ENTERed file case, writes the tape no matter what
commands have been issued since the file was opened.
Also note that the tape will no longer be an ANSI
compatible tape. When the file is .CLOSEd, the magtape
handler can't write out the size of the file because the
file size is lost to the handler. It writes out a zero

in its place. The file seguence number field will be
correct.

b. The only exception to the above rule 1s when the user
wishes to open the tape as file structured and write data
blocks that are not the standard 512 (decimal) byte size
that KT-11 magtape .WRITx commands use. The magtape
handler keeps track of the number of blocks written and
the end-of-file 1 1label are correct as long as no
commands other than the .SPFUN write command are used.
Otherwise, the block size will be lost.

€. It is recommended that the user issue .SPFUN commands to
a magtape file only for the case described in b. above.

Exception Reporting - Those .SPFUN's that are accepted by the
hardware handler report end of file and hard error conditions
through byte 52 in the system communication area.
Additionally, they use the argument normally used for a block
number as a pointer to a four-word error and status block to
return qualifying information about exception conditions.
When the block number argument is o, no qualifying
information is returned. Note that the contents of these
words are undefined when no exception conditions have
occurred (carry bit not set). The block is defined as
follows:

Words 1 and 2 are qualifying information.
Words 3 and 4 are reserved, and must be set to 0.

a. Qualifying information returned for the end of file
condition is as follows:

Code (Octal) Condition
Word 1: 1 Tape at end of file only (tape mark
detected)
2 Tape at end of tape only (no tape

mark detected)

3 Tape at end of tape and end of file
(tape mark detected)

4 Tape at beginning of tape (no tape
mark detected)

1-40

1/0 PROGRAMMING CONVENTIONS

When a tape mark is detected during a spacing operation,
the number of blocks not spaced is returned in the second
word.

End of tape, tape mark and beginning of tape are returned
as an end of file by the hardware handler.

b. Qualifying information returned for the hard error
condition is as follows:

gggg_(OCtal) Condition
Word i: 0 No additional information
1 Tape drive not available
2 Tape position lost. When this

error occurs, the tape should be
rewound or backspaced to a known

position.
3 Nonexistent memory accessed
4 Tape write-locked.
5 Last block read had more

information. The MM handler will
return the number of words not read
in the second word.

6 Short block was read (the
differences between the number of
bytes (not words) requested and the
number of bytes read is returned in
the second word).

c. The hardware handler issues a hard error if it receives
any request other than .LOOKUP (non-file-structured),

.CLOSE, or any .SPFUN request not defined for the
hardware handler.

d. When running under the XM monitor the blk area for error
reporting must be mapped at all times.

Read/Write Physical Blocks of Any Size - The hardwarehandler
reads and writes blocks of any size. Requests for reading
and writing a variable number of words are implemented with
two .SPFUN codes.

a. The .SPFUN request to read a variable number of words 1in
a block has the following form:

.SPFUN area,chan,#370,buf,wcnt,blk{,crtn]

where: 370 is the function code for a read
operation
blk is the address of a four-word error

and status block used for returning
the exception conditions.

crtn is an optional argument that specifies

a completion routine is to be entered
after the request is executed.

1-41

I/0 PROGRAMMING CONVENTIONS

This request returns the following errors. Additional
qualifying information for these errors is returned in
the first two words of the blk argument block.

Byte 52 error Qualifying information

EOF (end of file) Tape 1is at end of file only (tape
Value=0 mark detected) if bit 0o is set.
Tape is at end of tape only (no tape
mark detected) if bit 1 is set.
Tape is at end of tape and end of
file (tape mark detected) if bits 0,1
are set.

Hard Error No additional information (Code=0)
(Value=1)

Tape drive is not available (Code=1)
Tape position lost (Code=2)
Nonexistent memory accessed (Code=3)

Short block was read. The difference
between the number of words requested
and the number of words read is
returned in the second word of blk
(Code=6) .

The last block read had more
information. For the TJUl6 the
number of words not read is returned
in the second word of blk (Code=5).

The .SPFUN request to write a variable number of words
to a block has the following form:

«SPFUN area,chan,#37l,buf,wcnt,blk[,crtn]

where: 371 is the function code (decimal) for a
write operation.

This request returns the following errors. Additional
qualifying information for these errors is returned in
the first two words of the blk argument block.

Byte 52 Error Qualifying Information

EOF (end of file) Tape is at end of tape only if
(Value=0) bit 1 is set.

Hard error No additional information (Code=0)
(Value=1) Tape drive not available (Code=1)

Tape position lost (Code=2)
Nonexistent memory accessed (Code=3)
Tape is write locked (Code=4)

NOTE

The TJU16 tape drive can return
a hard error if a write request
with a word count less than 7 is
attempted.

1-42

1/0 PROGRAMMING CONVENTIONS

space Forward/Backward - The hardware handler accepts a
command that spaces forward or backward block-by-block or
until a tape mark is detected. When a tape mark is detected,
the handler reports it along with the number of blocks not
skipped. These commands can be used to issue a space-to-tape
mark command by passing a number greater than the maximum
number of blocks on a tape. The tape 1is left positioned
after the tape mark or the last block passed. There are two
spacing requests, which have the following forms:

a. Space forward by block
.SPFUN area,chan,#376,,wcnt,blk[,crtn]

where: 376 is the function code for forward space
operation.

wcnt is the number of blocks to space past
(cannot exceed 65,534).

crtn is a completion routine to be entered when
the operation is complete.

This request returns the following errors. Additional
qualifying information for these errors is returned in
the first two words of the blk argument block.

Byte 52 error Qualifying information

EOF (end of file) Tape is at end of file only (tape
mark detected) if bit 0 is set
Tape is at end of tape only (no tape
mark detected) if bit 1 is set
Tape is at end of tape and end of
file (tape mark detected) if pits 0,1
are set

The second word in blk contains the number of blocks
requested to pbe spaced (went) minus the number of blocks
spaced if a tape mark is detected. Otherwise its value
is not defined.

Hard error No additional information (Code=0)
Tape drive not available (Code=1)
Tape position lost (Code=2)

NOTE
Due to hardware restrictions it 1is
recommended that no forward space
commands be issued if the reel 1is
positioned past the end of tape
marker.
b. Space backward by block:
.SPFUN area,chan,#375,,wcnt,blk[,crtn]

where: 375 is the function code for a backspace
operation.

I/0 PROGRAMMING CONVENTIONS

This request returns the following errors and additional
qualifying information is returned in the first two
words of the blk argqument block.

Byte 52 error Qualifying information

EOF (end of file) Tape is at end of file (tape mark
detected) if bit 0 is set
Tape is at end of tape (no tape mark
detected) if bit 1 is set
Tape is at end of tape and end of
file (tape mark detected) if bit 0,1
are set
Tape is at beginning of tape (no tape
mark detected) if bit 2 is set

The second word in blk contains the number of blocks
requested to be spaced (wcnt) minus the number of blocks
actually spaced (including the tape mark) if a tape mark
is detected. Otherwise, its value is not defined.

Hard error No additional information (Code=0)
Tape drive not available (Code=1)
Tape position lost (Code=2)

Rewind - The handler accepts a rewind command, and rewinds
the tape drive to the beginning of tape. The handler cannot
accept other requests until the rewind operation is complete,
but other handlers can be active during tape rewind. The
rewind request has the following format:

.SPFUN area,chan,#373,,,blk[,crtn]

where: 373 is the function code for the rewind
operation.

crtn is a completion routine to be entered
when the operation is complete.

This request returns the following error, and additional
qualifying information is returned in the blk arqument block.

Byte 52 error Qualifying information

Hard error No additional information (Code=0)
Tape drive not available (Code=1)

Rewind and Go Off Line - This request is the same as rewind
except that it takes the tape drive off-line, and then
rewinds to the beginning of tape. The handler is free to
accept commands after the rewind is initiated. The rewind
and go off-line request has the following format:

.SPFUN area,chan,#372,,,blk[,crtn]

where: 372 is the function code for the rewind
and go off-line operation.

crtn

This request returns the same error codes and qualifying
information as the rewind request.

1-44

9.

1/0 PROGRAMMING CONVENTIONS

Write wWith Extended Gap - This request allows writing on
tapes with bad spots. This request is identical to the write
request except that the function code for write with extended
gap operation is 374.

The errors for this request are identical to those for the
write request.

Write Tape Mark - The hardware handler accepts a request to
write a tape mark. This request has the following format:

.SPFUN area,chan,#377,,,blk[,crtn]

where: 377 is the function code for the write
tape mark operation.

This request returns the following errors: Additional
qualifying information is returned in the first two words of
the blk argument block.

Byte 52 error Qualifying information

EOF (end of file) End of tape is detected if bit 1
is set.

Hard error No additional information (Code=0)
Tape drive not available (Code=l)
Tape position lost (Code=2)
Tape is write locked (Code=4)

Error Recovery Algorithm - Any errors detected during spacing
operations cause the recovery attempt to be aborted and a
hard (position) error is reported.

a. Read Error Recovery = The hardware handler performs the
following algorithm if a read parity error is detected.

1. Backspaces over the block and rereads. When
unsuccessful it is repeated until five read commands
have failed.

2. Backspaces five blocks, spaces forward four blocks,
then reads the record.

3. This entire sequence (steps 1 and 2) is repeated

.

eight times or until the block is read successfully.

b. Wwrite Error Recovery - The hardware handler performs the
following algorithm upon detection of a read after write
parity error.

1. Backspaces over one block.

2. Erases three inches of tape and rewrites the block.
In no case is an attempt made to rewrite the block
over the bad spot, since, even if successful, the
block could be marginal and cause problems at a
later time.

3. If the read after write still fails, the entire
sequence (steps 1 and 2) are repeated. When 25 feet
of erased tape have been written, a hard error is
given.

1-45

10.

11.

12.

13.

I/0 PROGRAMMING CONVENTIONS

Non-File-Structured .LOOKUP Request - The hardware handler
accepts a non-file-structured .LOOKUP request. This function
is necessary to open a channel to the device before any I/0
operations can be executed. It causes the hardware handler
to mark the drive busy so that no other channel can be opened

to that drive until a .CLOSE is performed. This request has
the following form:

. LOOKUP area,chan,dblk,segnum

where: segnum is an argument that specifies whether
the tape 1is to be rewound or not.
When this argument is U, the tape is
rewound. When this argument is -1,
the tape is not rewound.

This request returns the following errors.

Byte 52 code Meaning
0 or1l Not meaningful for this request.
2 Device in use. The drive being accessed
is already attached to another channel.
3 Tape drive not available.
4 Illegal argument detected. The file

name was not 0 or the seqnum had an
argument that was not 0 or -1.

.CLOSE Request - The hardware handler accepts the .CLOSE
request and causes the handler to mark the drive as
available. This request has the following form:

.CLOSE chan

SET Commands - The hardware handler accepts SET commands to
set the track number, density and parity of the tape drive.
These commands are fully described in Chapter 4 of the RT-11
System User's Guide.

Non-File-Structured .WRITx Request - The hardware handler
accepts .WRITx requests that write a variable number of words
to a block on tape. The block number field is ignored. This
request has the following form:

.WRITx area,chan,buf,went[,,crtn]

This request returns the following errors. Note that no
additional qualifying information is available.
Byte 52 error Meaning
EOF (end of file) The end of tape marker has been
(Value=0) sensed.
Hard error This can mean any of the error
(Value=1) conditions listed for the

file-structured write request.

1-46

1/0 PROGRAMMING CONVENTIONS

14. Non-File—Structured .READx Request - This reguest reads a
variable number of words from a block on tape. It ignores
the end of tape marker and only reports end of file when a

tape mark is read. The block number field is ignored. The
request has the following form:

.READX area,chan,buf,wcnt[,,crtn]

This request returns the following errors. Note that there
is no additional qualifying information available.

Byte 52 error Meaning

EOF (end of file) Only reported if a tape mark is read.
(Vvalue=0) The end of tape marker will not cause
end of file.

Hard error This can mean any of the error
(value=1) conditions listed for the
file-structured read request.

Writing Tapes On Oother PDP-11 Operating Systems To Be Read By RT-11

RT-11 can read files written on other computer systems that support
the DIGITAL standard (ANSI) for labels. Below are a few examples of
how to write ANSI tapes on some common DIGITAL pDP11 operating
systems. Keep in mind that there are other factors involved besides
just the label and format compatibility. These include density,
parity and number of tracks written on the tape.

writing Tapes on RSTS/E

RSTS/E supports two types of magtape formats, DOS-11 and ANSI. In the
following examples, dd represents the magtape handler name, either MM
or MT. 1In order to ensure that an ANSI file structure is written, Dbe
sure to issue the following command:

ASSIGN ddn:.ANSI (Allocates the device to the job and
ensures that an ANSI file structure is
used)

RUN S$PIP ddn:/ZE/VID:XXXXXX (PIP is used to initialize the
tape; XXXXXX is the volume 1D)

Really zero ddn:? Yes (PIP prompts before initializing the
tape)

PIP ddn:=FARQUA.MAC,VBG.TEC (PIP is used to copy files to the tape

DEASSIGN ddn: (Deallocates the device)

writing Tapes on RSX-11/M

RSX-11/M needs the following commands to access a magtape.

ALL ddn: (Allocates a drive)

INIT ddn:RT11 (Initializes the tape and gives the name "RT11l" as
the volume identifier)

MOU ddn:RT11 (Mounts the tape volume)

PIP ddn:=[l3,10]FllPRE.MAC,ALLOC.MAC (Copies files to the tape)

DMO ddn:RT11 (Dismounts the tape volume)

DEA ddn: (Deassigns the drive)

Writing Tapes on RSX-11/D and IAS

INIT ddn:RT11 (Initializes the tape ard gives the name "RT11" as
the volume identifier)
MOU ddn:RT11l (Mounts a tape volume)

1-47

I/0 PROGRAMMING CONVENTIONS

(For RSX-11/D use the PIP program to write files to the tape)
(For IAS use the COPY command)

DMO ddn:RT11 (Dismounts the tape volume)

The above examples are intended only as examples. For more complete
information on the above systems consult the appropriate
documentation.

The contents of files written under the RSX-11 and IAS systems do not
necessarily correspond to those types of data files under RT-11. For
example, under RT-11 text files consist of stream ASCII data (carriage
return and line feed characters are imbedded in the text) whereas the
other systems just mentioned use a different type of character
storage. The wuser is urged to pay special attention to the contents
of the files he wishes to transfer.

When writing files to be read under RT-11, the only block size the
RT-11 PIP program reads is 512(decimal) characters/block. However,
the RT-11 DIR program produces a directory for any compatible tape.

1.4.8.2 Cassette Tape Handler (CT) - The CT handler can operate in
two modes: hardware mode and software mode. These names refer to the
type of operation that can be performed on the device at a given time.
Software mode is the normal mode of operation used when accessing the
device through any of the RT-11 system programs. In software mode,
the handler automatically attends to file headers and uses a fixed
record length of 64 words to transfer data.

Hardware mode allows the user to read or write any format desired,
using any record size. In this mode, the word count is taken as the
physical record size.

When the handlers are initially loaded by either the .FETCH programmed
request or the LOAD command, only software functions are permitted.
To switch from software to hardware mode, either a rewind or a
non-file-structured .LOOKUP must be performed. (A non-file-structured
.LOOKUP is a .LOOKUP in which the first word of the file name is
null.)

In software mode, the following functions are permitted:

.ENTER - Open new file for output

. LOOKUP ~ Open existing file for input and/or output

.DELETE - Delete an existing file on the specified device.

.CLOSE - Close a file that was opened with .ENTER or
. LOOKUP

.READ/.WRITE - Perform data transfer requests

In .ENTER, .LOOKUP, and .DELETE an optional file count parameter can
be specified. Its meaning is as follows:

Count Argument Meaning
=0 A rewind is done before the operation.
>0 No rewind is done. The value of the count is

taken as a 1limit of how many files to look at
before performing the operation (for example, a
count of 2 looks at two files at most. A count
of 1 looks at only the next file).

1-48

1/0 PROGRAMMING CONVENTIONS
<0 A rewind is done. The absolute value of the
switch is then used as the limit.

If the file indicated in the request is located before the 1limit is
exhausted, the search succeeds at that point.

As an example, consider:

.LOOKUP #AREA,#0,#PTR,#5

BCS Al
AREA: .BLKW 10.
PTR: .RAD50 /CTO/

.RAD50 /EXAMPLMAC/

In this case, the file count argument is +5, indicating that no rewind
is to be done and that CTO is to be searched for the indicated file
(EXAMPL.MAC) . 1f the file is not found after four files have been
skipped, or if an end-of-tape occurs in that space, the search is
stopped, and the tape is positioned either at the end of tape (EOT) or
at the start of the fifth file. If the named file is found within the
five files, the tape is positioned at its start. If the end of tape
is encountered first, an error is generated.

As another example:
.LOOKUP $AREA, #0,#PTR,#-5

This performs a rewind, and then uses a file count of five in the same
way the previous example does.

Handler Functions - The cassette handler performs the following
functions:

1. .LOOKUP Request

If the file name (or the first word of the file name) is
null, the operation is considered to be a non-file-structured
_LOOKUP. This operation puts the handler into hardware mode.

A rewind is automatically done in this case.

I1f the file name is not null, the handler tries to find the
indicated file. .LOOKUP uses the optional file count as
illustrated above. Only software functions are allowed.

2. .DELETE Request

.DELETE eliminates a file of the designated name from the
device. .DELETE also uses the file count argument, and can
thus do a delete of a numbered file as well as a delete by
name . When a file 1is deleted, an unused space is created
there. However, it is not possible to reclaim that space, as
it is when the device is random access. The unused spot
remains until the volume is re-initialized and rewritten. If
a file name is not present, a non-file-structured .DELETE is
performed and the tape is zeroed.

3. .ENTER Request

The .ENTER reguest creates a new file of the designated name
on the device. This request uses the optional file count,
and can thus enter a file by name or by number. If enter by
name is done, the handler deletes any files of the same name.

I/0 PROGRAMMING CONVENTIONS

If enter by number is done, the indicated number of files is
skipped, and the tape is positioned at the start of the next
file.

NOTE

Care must be exercised in performing
numbered .ENTERs, as it is possible to
enter a file in the middle of existing
files and thus destroy any files from
the next file to the end of the tape.

It is also possible to create more than
one file with the same name, since
-ENTER only deletes files of the same
name it sees while passing down the
tape. If an .ENTER is done with a count
greater than 0, no rewind is per formed
before the file is entered. If a file
of the same name is present at an
earlier spot on the tape, the handler
cannot delete it. A non-file-structured
-ENTER performs the same function as a
non-file-structured .LOOKUP but does not
rewind the tape. Since both functions
allow writing to the tape without regard
to the tape's file structure, they
should be used with care on a
file-structured tape.

.CLOSE Requests

-CLOSE terminates operations to a file on cassette and resets
the handler to allow more -LOOKUPs, .ENTERs, or .DELETEs. If
a .CLOSE is not performed on an entered file, the end of tape
label will be missing and no new files can be created on that
volume. In this case, the last file on the tape must be
rewritten and closed to create a valid volume.

-READ/.WRITE Requests

-READ and .WRITE requests are unique in that they can be done
either in hardware or software mode. 1In software mode (file
opened with .LOOKUP or -ENTER), records are written in a
fixed size (64 words). The word count specified in the
operation is translated to the correct number of records. On
a .READ, the wuser buffer is filled with zeroes if the word
count exceeds the amount of data available.

Following is a discussion of how the various parameters for
.READ/.WRITE are used.

a. Block Number
Only sequential operations are performed. If the block

number is 0, the cassette is rewound to the start of the
file. Any other block number is disregarded.

1/0 PROGRAMMING CONVENTIONS

b. Word Count

If the word count is 0, the following conditions are
possible:

If the block number is non-zero, the operation Iis
actually a file name seek. The block number is
interpreted as the file count argument, as discussed in
the example of .LOOKUP. The buffer address should point
to the Radix-50 equivalents of the device and file to be
located. This feature essentially allows an asynchronous
.LOOKUP to be performed. The standard .LOOKUP request
does not return control to the user program until the
tape is positioned properly, whereas this asynchronous
version returns control immediately and interrupts when
the file is positioned.

The user can then do a synchronous, positively numbered
.LOOKUP to the file just positioned, thus avoiding a long
synchronous search of the tape.

If the block number is 0, a cyclical redundancy check
error occurs.

Following is a description of the allowed hardware mode functions for
the handler, as well as examples of how to call them. In general,
special functions are called by using the .SPFUN request; examples of
usage follow each function. The special functions require a channel
number as an argument. The channel must initially be opened with a
non-file-structured .LOOKUP, which places the handler in hardware
mode.

The general form of the .SPFUN request is:
.SPFUN area,chan,func,buf,wcent,blk,crtn
where:
func is the function code to be performed.
The request format is:
RO area: 32 chan
blk
buf
wcnt
func 377
crtn
Cassette Special Functions
1. Rewind (Code = 373) - This request rewinds the tape to load
point. This puts the unit in hardware mode in the same
manner as a non-file-structured .LOOKUP where any of the
other functions can be done. Unless a completion routine is
specified, control does not return to the user until the
rewind completes. This request has the following form:
.SPFUN area,#0,#373,#0,#0,%#0,crtn
where: crtn is a completion routine to be entered when

the operation is complete. The other arguments
are not required.

1-51

I/0 PROGRAMMING CONVENTIONS

2. Last File (Code = 377) - This request rewinds the cassette
and positions it immediately before the sentinel file
(logical end-of-tape). The request form is the same as for
rewind except that code 377 is used.

.SPFUN area,#0,#377,#0,#0,#0([,crtn]
3. Last Block (Code = 376) - This request rewinds one record.
.SPFUN area,#0,#376,#0,#%0,#0(,crtn]

4. Next File (Code = 375) - This request spaces the cassette
forward to the next file.

.SPFUN area,#0,#375,40,#0,%#0[,crtn]

5. Next Block (Code = 374) - This request spaces the cassette
forward by one record.

.SPFUN area,#0,#374,40,#%0,#0[,crtn]

6. Write File Gap (Code = 372) - This request terminates a file
written by the user program when in hardware mode.

Sample Macro Call:
.SPFUN area,#0,#372,#0,#0,4#0

This writes a file gap synchronously, while:
.SPFUN area,#0,#372,#0,#0,40,#1

or

.SPFUN area,#0,#372,#0,%0,40,crtn
performs asynchronous write file gap operations.

Cassette End-of-File Detection - Since cassette is a sequential
device, the handler for this device cannot know in advance the number
of blocks in a particular file, and thus cannot determine if a
particular read request is attempting to read past the end of file.
User programs can use the following procedures to determine if the

handler has encountered end of file in either software or hardware
mode.

In software mode, if end of file is encountered during a read and some
data is read the cassette handler will zero fill the rest of the
buffer and return to the caller. The next read attempted on that
channel returns with the carry bit set and with the error byte
(absolute location 52) set to indicate an attempt to read past
end-of-file.

In hardware mode, the cassette handler does not report end of file as
it does in software mode. The best way that user programs can
determine if a cassette read has encountered a file gap 1is to check
the device status registers after each hardware mode read is complete.

1-52

I1/0 PROGRAMMING CONVENTIONS

Example:
TACS=177500 $TA11 CONTROL AND STATUS REGISTER
TAEOF=4000 EOF RIT IN TACS
TAEOQT=20000 $EOT RIT IN TACS
JREADW #AREA»#CHNL » $BUFF y #400» BLKNUM iREAD FROM CT
BCS EMTERR $ TEST ERRORS
TST P4#TACS $ERROR RIT SET IN TACS?
BFL NOERR $IF PL - NO
RIT $TAEOF y@#TACS $YES - WAS IT END OF FILE?
BRNE EOF $IF NE - YES
EOF? $CASSETTE END OF FILE ENCOUNTERED

1f desired, both the EOF and EOT bits could be checked:
BIT $MTSEOF+MTSEQT »@#MTS MT EOF OR EOT?

or

BIT $TAEOF+TAEOT,»@$#TACS CT EOF OR EOT?

1.4.8.3 Diskette Handlers (DX,DY) - The .SPFUN request permits
reading and writing of absolute sectors on the diskettes. The DY
handler accepts an additional .SPFUN request to determine the size, in
256-word blocks, of the volume mounted in a particular unit. On
double density diskettes, sectors are 128 words long. RT-11 normally
reads and writes them in groups of two sectors. On single density
diskettes, sectors are 64 words long. RT-11 normally reads and writes
them in groups of four sectors. Sectors can be accessed individually
through the .SPFUN request. The format of the request is as follows:

.SPFUN area,chan,code,buf,wcnt,blk,crtn

where:

code is the function to be performed:
377 Read physical sector
376 write physical sector
375 Write physical sector with deleted data mark
374 unused
373 (DY only) determine device size, in 256-word

blocks, of a particular volume
buf for functions 377, 376, 375:

is the location of a 129-word buffer (for double density
diskettes) or a 65-word buffer (for single density
diskettes). The first word of the buffer, the flag word,
is normally set to 0.

I1f the first word is set to 1, a read on a physical
sector containing a deleted data mark is indicated. The
actual data area of the buffer extends from the second
word to the end of the buffer.

1-53

I/0 PROGRAMMING CONVENTIONS

for function 373:

buf is the location of a one-word buffer in which the
size of the volume in the specified unit is returned.
(For single density diskettes, 494 (decimal) is returned.
For double density diskettes, 988 (decimal) is returned.)

wcnt for functions 377, 376, 375:

is the absolute track number, 0 through 76, to be read or
written.

for function 373:
wcnt is unused and should be set to 1.

blk for functions 377, 376, 375:
is the absolute sector number, 0 through 26, to be read
or written.

for function 373:
blk is unused and should be set to (.

The diskette should be opened with a non-file-structured .LOOKUP.
Note also that the buf, wcnt, and blk arguments have different
meanings when used with diskettes.

Sample Macro Call:

-SPFUN #RDLIST,#1,#377,#BUFF,#0,47,%0
s PERFORM A
: SYNCHRONOUS SECTOR READ
;FROM TRACK 0, SECTOR 7
;7 INTO THE 65-WORD AREA BUFF

Each DX and DY handler can support two controllers, and each
controller supports two drives. For example, if the RX01l handler is
SYSGENed to support two controllers, it will support four devices:
DX0, DX1, DX2 and DX3. DX0 and DXl are drives 0 and 1 of the standard
diskette at vector 264 and CSR 177170. DX2 and DX3 are drives 0 and 1
of the other controller. Note that only one I/0 process can be active
at one time even though there are two controllers. There 1is no
overlapped I/0 to the handler.

1.4.8.4 Card Reader Handler (CR) - The card reader handler can
transfer data either as ASCII characters in DEC 026 or DEC 029 card
codes (see Table 1-3) or as column images controlled by the SET
command. In ASCII mode (SET CR NOIMAGE), invalid punch combinations
are decoded as the error character 134 (octal)--backslash. In IMAGE
mode, no punch combination is invalid; each column is read as 12 bits
of data right-justified in one word of the input buffer. The handler
continues reading until the transfer word count is satisfied or until
a standard end-of-file card is encountered (12-11-0-1-6-7-8-9 punch in
column 1; the rest of the card is arbitrary). On end-of-file, the
buffer is filled with zeroés and the request terminates successfully;
the next input request from the card reader gives an end-of-file
error. Note that if the transfer count is satisfied at a point that
is not a card boundary, the next request continues from the middle of
the card with no loss of information. If the input hopper is emptied
before the transfer request is complete, the handler hangs until the
hopper is reloaded and the "START" button on the reader is pressed
again. The transfer then continues until completion or until another
hopper empty condition exists. End-of-file is not reported on the
hopper empty condition. The handler hangs if the hopper empties
during the transfer regardless of the status of the SET CR HANG/NO

1-54

1/0 PROGRAMMING CONVENTIONS

HANG option. No special action is required to use the card reader
handler with the CM 11 mark sense card reader. The program should be
aware of the fact that mark sense cards can contain less than 80
characters. Note also that when the CR handler is set to CRLF or TRIM
and is reading in IMAGE mode, unpredictable results can occur.

Table 1-3
DEC 026/DEC 029 Card Code Conversions
Zone Digit Octal Character Name
none
none 040 SPACE
1 061 1 digit 1
2 062 2 digit 2
3 063 3 digit 3
4 064 4 digit 4
5 065 5 digit 5
6 066 6 digit 6
7 067 7 digit 7
12
(DEC 029) none 046 & amper sand
(DEC 026) 053 + plus sign
1 101 A upper case A
2 102 B upper case B
3 103 C upper case C
4 104 D upper case D
5 105 E upper case E
6 106 F upper case F
7 107 G upper case G
11
none 055 - minus sign
1 112 J upper case J
2 113 K upper case K
3 114 L upper case L
4 115 M upper case M
5 116 N upper case N
6 117 (0] upper case O
7 107 P upper case P
0
none 060 0 digit 0
1 057 / slash
2 123 S upper case S
3 124 T upper case T
4 125 U upper case U
5 126 v upper case V
6 127 W upper case W
7 130 X upper case X
8
none 70 8 digit 8
1 140 h accent grave
(DEC 029) 2 072 : colon
(DEC 026) 137 _ backarrow
(underscore)
(DEC 029) 3 043 # number sign
(DEC 026) 075 = equal sign
4 100 Q commercial "at"
(DEC 029) 5 047 ' single quote
(DEC 026) 136 - uparrow
{ (circumflex)

(continued on next page)

I/0 PROGRAMMING CONVENTIONS

Table 1-3 (Cont.)
DEC 026/DEC 029 Card Code Conversions

Zone Digit Octal Character Name
(DEC 029) 6 075 = equal sign
(DEC 026) 047 ' single quote
(DEC 029) 7 042 " double quote
(DEC 026) 134 \ backslash
9
none 071 9 digit 9
2 026 CTRL/V SYN
7 004 CTRL/D EOT
12-11
none 174] vertical bar
1 152 j lower-case J
2 153 k lower-case K
3 154 1 lower-case L
4 155 m lower-case M
5 156 n lower-case N
6 157 o lower-case 0
7 160 P lower-case P
12-0
none 173 { open brace
1 141 a lower-case A
2 142 b lower-case B
3 143 c lower-case C
4 144 d lower-case D
5 145 e lower-case E
6 146 b lower-case F
7 147 g lower-case G
12-8
none 110 H upper-case H
(DEC 029) 2 133 [open sqguare bracket
(DEC 026) 077 ? question mark
3 056 . per iod
(DEC 029) 4 074 < open angle bracket
(DEC 026) 051) close parenthesis
(DEC 029) 5 050 (open parenthesis
(DEC 026) 135] close square bracket
(DEC 029) 6 053 + plus sign
(DEC 026) 074 < open angle bracket
7 041 ! exclamation mark
12-9
none 111 I upper-case 1
1 001 CTRL/A SOH
2 002 CTRL/B STX
3 003 CTRL/C ETX
5 011 CTRL/I HT
7 177 DEL
11-0
none 175 } close brace
1 176 ~ tilde
2 163 s lower-case S
3 164 t lower-case T
4 165 u lower-case U
) 166 v lower-case V
6 167 w lower-case W
7 170 x , lower-case X
I

1-56

(continued on next page)

I1/0 PROGRAMMING CONVENTIONS

Table 1-3 (Cont.)
DEC 026/DEC 029 Card Code Conversions

Zone Digit Octal Character Name
11'8 i
none 121 Q upper-case Q
(DEC 029) 2 135] close square bracket
(DEC 026) 072 : colon
3 044 $ currency symbol
4 052 * asterisk
(DEC 029) 5 051) close parenthesis
(DEC 026) 133 [open square bracket
(DEC 029) 6 073 : semi-colon
(DEC 026) 076 > close angle bracket
(DEC 029) 7 136 - uparrow
(circumflex)
(DEC 026) 046 & amper sand
11-9
none 122 R upper-case R
1 021 CTRL/Q DC1
2 022 CTRL/R DC2
3 023 CTRL/S DC3
6 010 CTRL/H BS
0-8
null 131 Y upper-case Y
(DEC 029) 2 134 \ backslash
(DEC 026) 073 ; semi-colon
3 054 ’ comma
(DEC 029) 4 045 % percent sign
(DEC 026) 050 (open parenthesis
(DEC 029) 5 137 _ backarrow
(underscore)
(DEC 026) 042 " double gquote
(DEC 029) 6 076 > close angle bracket
(DEC 026) 043 3 number sign
(DEC 029) 7 077 ? question mark
(DEC 026) 045 % percent sign
0-9
null 132 Z upper-case 2
5 012 CTRL/J LF
6 027 CTRL/W ETB
7 033 ESC
9-8
4 024 CTRL/T DC4
5 025 CTRL/U NAK
7 032 CTRL/Z SUB
12-9-8
3 013 CTRL/K VT
4 014 CTRL/L FF
5 015 CTRL/M CR
6 016 CTRL/N SO
7 017 CTRL/O SI
11-9-8
none 030 CTRL/X CAN
1 031 CTRL/Y EM
4 034 CTRL/\ FS
5 035 CTRL/] GS
6 036 CTRL/" RS
7 037 CTRL/_ us

(continued on next page)

I/0 PROGRAMMING CONVENTIONS

Table 1-3 (Cont.)
DEC 026/DEC 029 Card Code Conversions

Zone Digit Octal Character Name
0-9-8

5 005 CTRL/E ENQ

6 006 CTRL/F ACK

7 007 CTRL/G BEL
12-0-8 none 150 h lower-case H
12-0-9 none 151 i lower-case 1
12-11-8 none 161 g lower-case Q
12-11-9 none 162 r lower-case R
11-0-8 none 171 y lower-case Y
11-0-9 none 172 z lower-case 2
12-11-9-8

1 020 CTRL/P DLE
12-0-9-8

1 000 NUL

1.4.8.5 High-Speed Paper Tape Reader/Punch (PC) - RT-11 provides
support of the PR1l High Speed Reader and the PCl1l High Speed
Reader/Punch through the PC handler. The PC handler distributed with
the system supports both the paper tape reader and punch. A handler
supporting only the paper tape reader can be created during SYSGEN.
The PC handler does not print an ~ on the terminal when it is entered
for input the first time, as did the PR handler for earlier releases
of RT-11. The tape must be in the reader when the command is issued,
or an input error occurs. This prohibits any two-pass operations from
being done using PC as an input device. For example, linking and
assembling from PC does not work; an input error occurs when the
second pass 1is initiated. The correct procedure is to transfer the
paper tape to disk or DECtape, and then perform the operation on the
transferred file.

On input, the PC handler zero fills the buffer when no more tape is
available to read. On the next read request to the PC handler, the

end-of-file bit in byte 52 is set and the C bit is set on return from
the I/0 completion.

1.4.8.6 Console Terminal Handler (TT) - The console terminal can be
used as a peripheral device by using the TT handler. Note that:

1. An " is typed when the handler is ready for input.

2. CTRL/Z can be used to specify the end of input to TT. No
carriage return is required after the CTRL/Z. 1If CTRL/Z is
not typed, the TT handler accepts characters until the word
count of the input request is satisfied.

3. CTRL/O, struck while output is directed to TT, causes an

entire output buffer (all characters currently queued) to be
ignored.

1-58

1.4.8.7

I/0 PROGRAMMING CONVENTIONS

A single CTRL/C struck while typing input to TT causes a
return to the monitor. If output is directed to TT, a double
CTRL/C is required to return to the monitor if FB is running.
If the SJ monitor is running, only a single CTRL/C is
required to terminate output.

The TT handler can be in use for only one job (foreground or
background) at a time, and for only one function (input or
output) at a time. The terminal communication for the Jjob
not using TT is not affected at all.

The user can type ahead to TT; characters are obtained from
the input ring buffer before the keyboard is referenced. The
terminating CTRL/Z can also be typed ahead.

I1f the mainline code of a job is using TT for input, and a
completion routine does a .TTYIN, typed characters are passed
unpredictably to the .TTYIN and TT. Therefore, this practice
should be avoided.

If a job sends data to TT for output and then does a .TTYOUT
or a .PRINT, the output from the latter is delayed until the
handler completes its transfer. If a TT output operation is
started when the monitor's terminal output ring buffer is not
empty (before the print-ahead is complete), the handler
completes the transfer operation before the buffer contents
are printed.

The TT handler does not interface to terminals other than the
assigned console terminal in a multi-terminal system.

RK06/07 Disk BHandler (DM) - The RT-11 RK06/07 handler has

some features that are not standard for most RT-11 handlers. Among
these non-standard features are the following:

1.
2.
3.
4.

5.

Support of bad block replacement.

.SPFUN requests to read and write absolute blocks on disk.
.SPFUN request to initialize the bad block replacement table.
.SPFUN error return information.

.SPFUN request to determine the size of a volume mounted in a
particular device unit. (The RKO6 and RK07 disks share the

same controller and handler. The RKO7 has twice as many
blocks as the RK06 volume.)

These features are discussed further in the following sections.

1.

Bad block replacement - The last cylinder of the RK06 and
RKO7 disks is used for bad block replacement and error
information. RT-11 supports a maximum of 32 bad blocks on
these disks. The bad block information is stored in block 1
on track 0, cylinder 0, of the disk. The replacement blocks
are stored on tracks 0 and 1 of the last cylinder. A bad
block replacement table is created in block 1 of the disk by
the DUP utility program when the disk is initialized. When a
bad block is encountered and the table is not present in the
handler from the same volume, the DM handler reads a
replacement table from block 1 of the disk and stores it in
the handler.

I/0 PROGRAMMING CONVENTIONS

When a bad sector error (BSE) or header validity error (HVRC)
is detected during a read or write, the DM handler replaces
the bad block with a good block from the replacement tracks.
The bad block replacement feature of RT-11 requires blocks 0
through 5 and tracks 0 and 1 of the last cylinder to be good.
This procedure causes an I/0 delay since the read/write heads
must move from their present position on the disk to the
replacement area, and back again.

If this I/0 delay cannot be tolerated, the disk can be
initialized without bad block replacement. In this case, bad
blocks are covered by .BAD files. Neither the bad blocks nor
the replacement tracks will be accessed. The advantage of
using bad block replacement is that the entire disk appears
to be good. 1If .BAD files are used instead, the disk becomes
fragmented around the bad blocks.

Only BSE and HVRC errors trigger the DM handler's bad block
replacement mechanism. If a bad block develops that is not a
BSE or HVRC error, the disk must be reformatted to have this
new block included in the replacement mechanism.
Reformatting should detect the new bad block, mark it so that
it generates a BSE or HVRC error, and add the block number to
the bad block information on the disk. The disk should then
be initialized to add the bad block to the replacement table.

+-SPFUN Requests - The RK06/07 handler accepts the .SPFUN
request with the following function codes:

377 for a read operation

376 for a write operation

374 - for initializing the bad block replacement table in the
handler.

373 - for determining the size, in 256-word blocks, of a
particular volume.

The format of the .SPFUN request is the same as explained in
Chapter 2 except as follows: for function codes 377 and 376,
the buffer size for reads and writes must be one word larger
than required for the data. The first word of the buffer
contains the error information returned from the .SPFUN
request. This information is returned for a .SPFUN read or
write, and the data transferred follows the error
information. The error codes and information are as follows:

Code Meaning
100000 If the I/0 operation is successful
100200 If a bad block is detected (BSE error)
100001 If an ECC error is corrected
100002 If an error recovered on retry
100004 If an error recovered through an offset retry
100010 If an error recovered after recalibration
1774xx If an error did not recover

1/0 PROGRAMMING CONVENTIONS

For function code 374, the buf, wcnt, and blk arguments should be 0.
For function code 373, buf is a one-word buffer where the size of the
specified volume in 256-word blocks is returned. The wcnt argument
should be 1 and the blk argument should be 0.

1.4.8.8 Null Handler (NL) - The null handler can accept all
read/write requests. On output operations this handler acts as a data
sink. When NL is called, it returns immediately to the monitor
indicating that the output 1is complete. The NL handler returns no
errors and causes no interrupts. On input operations NL returns an
end-of-file indication for all requests and no data is transferred.
Hence, the contents of the input buffer are unchanged.

1.4.8.9 RLO1l Disk Bandler (DL) - The RLO1l disk handler includes the
following special features:

1. .SPFUN requests to read and write absolute blocks on the disk
(without invoking the bad block replacement scheme).

2. Support of automatic bad block replacement.
3. .SPFUN request to initialize the bad block replacement table.

4. .SPFUN request to determine the size of a volume mounted in a
particular device unit.

The .SPFUN requests are as follows:

377 - for a read operation

376 - for a write operation

374 - for initializing the bad block replacement table in the
handler

373 - for determining the size, in 256-word blocks, of a

particular volume

Unlike the DM handler, the read and write .SPFUN requests for the DL
handler do not return an error status in the first word of the buffer.

See the description of the .SPFUN programmed request in Chapter 2 for
details on the special functions.

Bad block replacement for the RLO1l is similar to the bad block support
for the RK06 and RK0O7. However, the RLO1l device generates neither the
bad sector error (BSE) nor the header validity error (HVRC) .
Therefore, the handler must check the bad block replacement table for
each I/0 transfer. Since the table is always in memory as part of the
DL handler, the I/0 delay is not significant.

The last track of the RLOl disk contains a table of the bad sectors
that were discovered during manufacture of the disk. The ten blocks
preceding this table (the last ten blocks in the second-to-last track)
are set aside for bad block replacements. The maximum number of bad
blocks, ten, is defined in the handler.

As with the RK06 and RKO7, the user determines at initialization time
whether to cover bad blocks with .BAD files or to create a replacement
table for them and substitute good blocks during I/O transfers. The
advantage of using bad block replacement is that it makes a disk with
some bad blocks appear to have none. On the other hand, covering bad
blocks with .BAD files fragments the disk. Because RT-11 files must

1-61

I/0 PROGRAMMING CONVENTIONS

be stored in contiguous blocks, this fragmentation limits the size of
the largest file that can be stored.

If the /REPLACE option is specified during initialization of an RLO1l
disk, DUP scans the disk for bad blocks. It merges the scan
information with the manufacturing bad sector table, allocates a
replacement for each bad block, and writes a table of the bad blocks
and their replacements in the first 20 words of block 1 of the disk.
Block 1 1is a table of two-word entries. The first word is the block
number of a bad block; the second word is its allocated replacement.
The last entry in the table is a zero word. The entries in the table

are in order by ascending bad block number. A sample table 1is as
follows:

Bad block 12 Word 0
Its replacement 10210
37 Word 2
10211
553 Word 4
10212
End of list 0 Word 6

The handler contains space to hold a resident copy of the bad block
table for each unit. The amount of space allocated is defined by the
SYSGEN conditional DLSUN, which is the number of RLO1 units to be
supported. The value defaults to two if it is not defined. The

handler reads the disk copy of the table into its resident area under
the following three conditions:

l. If a request is passed to the handler and the table for that
unit has not been read since the handler was loaded into
memory.

2. If a request is passed to the handler and the handler detects
Volume Check drive status. This status indicates that the
drive spun down and spun up again, which means that the disk
was probably changed.

3. If a .SPFUN 374 request is passed to the handler. This
special function is used by DUP when it initializes the disk
table to ensure that the handler has a valid resident copy.

1.5 MULTI-TERMINAL SUPPORT

The multi-terminal device handler supports from one to sixteen
terminals. It is a SYSGEN option for FB and XM monitors that is
integrated into the resident monitor (RMON) and console terminal
service.

The multi-terminal service provides eight programmed requests as
follows (see Chapter 2 for additional details):

Sub-Code Request Operation
0 .MTSET Set terminal characteristics
1 «MTGET Get terminal characteristics
2 .MTIN Input characters from terminal
3 .MTOUT Output characters to terminal

1-62

1/0 PROGRAMMING CONVENTIONS

Sub-Code Request Operation
4 .MTRCTO Reset CTRL/O flag
5 .MTATCH Attach a terminal
6 .MTDTCH Detach a terminal
7 .MTPRN Print a line

Errors are returned in the error byte, location 52, as follows:

Error Codes Meanings
0 No character in buffer (MTIN).
No room in buffer (MTOUT).
1 Illegal unit number. The job did not attach it.
2 Non-existent unit number.
3 Illegal request - sub-code out of range.
4 Attempt to attach or detach a unit that is already

attached to another job.

5 Buffer or status block is outside legal addressing
range (XM monitor only).

The number and types of interfaces must be declared at SYSGEN time,
then logical wunit numbers (lun) are assigned to identify the
terminals. Lun's are assigned in the following order:

1. hardware console interface (a local DL11l)
2. other local mode DL1ll's

3. remote DL11l interfaces

4. local Dz11l lines

5. remote DZll lines

A unit control block, which associates a lun with a specific
interface, 1is set up for each terminal. Terminals are referenced by
the logical unit numbers. For example, logical unit number 0 is the
default console lun and is assigned to the hardware console interface.
The .TTYIN, .TTYOUT, .PRINT, .CSIGEN, .CSISPC, .GTLIN reguests, and
all TT references use the console; no TT support is provided for
terminals other than the console. Hence, an .MTIN or .MTOUT executed
with 0 as the logical unit number is directed to the console terminal.
However, the terminal that the system uses as the console can be

changed by the SET command as follows (provided that the terminal is a
local DL1l):

SET TT CONSOL=n

where:

n is a decimal value from 0 to 15 that indicates the 1logical
unit number of the terminal to be used as the new console.

1-63 September 1978

I/0 PROGRAMMING CONVENTIONS

For example, the following command assigns terminal number 3, which is
a local DL11l, to the system hardware console interface:

SET TT CONSOL=3

After this command is issued, .TTYIN, .TTYOUT, .PRINT, and any other
requests directed to the console terminal will use terminal number 3.

The foreground and background jobs can either share a single console
or they can have separate consoles. If a console is shared, only one
job can attach it. Only the owner of the shared console can issue
multi-terminal programmed requests to the terminal, but both jobs can
issue .TTYIN, .TTYOUT, .CSIGEN, .CSISPC, .GTLIN, and .PRINT requests.

All other terminals must be attached by the job before they can be
referenced and used. When the terminal becomes attached, it is
dedicated to the job that issued the attach request except when the
console must be shared by foreground and background jobs. The
foreground job can have a separate console with a different 1lun
assigned to it. This lun will be the default value for the .TTYIN,
.TTYOUT, .CSIGEN, .CSISPC, .GTLIN, and .PRINT programmed requests.
The assigning of the separate console is performed at load time by the
FRUN option /T:lun. The separate console is not the primary system
console and can only be considered an auxiliary console since KMON
cannot communicate with it. This auxiliary foreground console must

also be a local DL1l terminal interface and cannot be changed by the
SET TT CONSOL command.

When a terminal is attached to a job, it remains attached until it is
detached by a .MDTCH programmed request (see Chapter 2 for details),
or until the job exits or is aborted. If the terminal is detached
through a programmed request, the output in process at the terminal is
allowed to finish before the terminal is detached. 1If the terminal is
detached by aborting the job, the output is terminated and the
terminal is detached immediately.

When a terminal is attached to a job, it has the following default
characteristics:

80. character column width
CRLF$ option enabled (generates LF after RET)
PAGES option enabled (XON/XOFF enabled)

These defaults can be changed by the .MTSET request.

An asynchronous terminal status (ATS) option is available and can be
selected at SYSGEN time. This option provides the job with updated
status of the terminal and modem. When the terminal is attached, the
job can supply a status word that is updated as changes in the
terminal status occur. The status bits and their meanings are as
follows:

AS.CTC 100000 bit 15 Double CTRL/C struck

AS.INP 40000 bit 14 Input is available

AS.OUT 20000 bit 13 Output buffer empty

AS.CAR 200 bit 7 Carrier present (remote only)

The AS.CTC bit is set if a double CTRL/C is struck on any terminal
except the Jjob's console terminal. If a double CTRL/C is struck on
the job's console terminal, the job is aborted unless an .SCCA request
has been issued. In this case, bit 15 of the terminal status word is
set. This bit must be reset by the job before further processing.

1-64

I/0 PROGRAMMING CONVENTIONS

The AS.INP bit 1s set if input is available (a line of characters in
normal mode or a single character in special mode). The bit is
cleared when the characters are read.

The AS.OUT bit 1s set when the output ring buffer is empty (when the
last character is printed). It is cleared when characters remain to
be printed.

The AS.CAR bit 1s set when a remote line is answered. It 1is <cleared
when a remote line hangs up or drops a carrier.

All of the bits discussed in the previous section indicate significant
events have occurred when they are set. These bits are set and

cleared by the multi-terminal service, except AS.CTC, which must be
cleared by the program when tested.

1.6 ERROR LOGGING
The error logging process Kkeeps a statistical record of all 1I/0
operations on devices that are supported by this feature. In addition
to the statistics, the error logging process also detects and stores
any errors that occur during the I/0 operations. The following
statistics for each supported device are recorded:

1. number of read successes

2. number of write successes

3. number of hard errors (unrecoverable errors)

4. number of soft errors (recoverable errors)
The following statistics for memory and cache are recorded:

1. number of memory parity errors

2. number of cache memory errors

In addition to the statistics listed above, the following information
is retained if an error occurs in memory:

1. error sequence number
2. PC

3. Ps

4. memory parity registers
5. cache error registers

The following information 1is retained if an error occurs on a
supported peripheral device:

1. error sequence number
2. unit number
3. device ID (from S$STAT)

4. queue element block number

I/0 PROGRAMMING CONVENTIONS

5. queue element buffer address

6. Qqueue element word count

7. device hardware registers

8. total retry count

9. retry countdown

1.6.1 The Error Logging Subsystem
The error logging process is implemented through an error 1logging
subsystem consisting of four programs written in MACRO and FORTRAN

(see Figure 1-4 and Table 1-4).

Table 1-4
Error Logging Subsystem Components
Program Language Function
Error Log Handler MACRO-11 Reads and stores system errors and
(EL) successful 1I/0 operations for all
supported devices.
Error Log Utility MACRO-11 Creates a disk file (ERRTMP.SYS),
(ERRUTL) writes out the data collected by the
EL handler to the file ERRTMP.SYS,
and queries for number of errors in
EL.
Error log file MACRO-11 Formats the file produced by ERRUTL
Formatter (PSE) into a standard error log file named
ERROR.DAT.
Error Summary/ FORTRAN 1V Analyzes and writes out the contents
Report Generator of the standard error log file to a
(SYE) hard-copy or visual display device.

1-66

1/0 PROGRAMMING CONVENTIONS

(14D 6'23)
30IA30

AVdSIa

(133uig 6'9)
301A30
AdOD QHVH

weibetrqg yo0Td TeuoT3oung wajysAsqns burbbog 10113

IVYNOILdO

(na

‘Al LHO4
‘0ISvE

NnW '1081Q)

WYH9O0Ud
43sn

‘3 MUl pue SJUBIUOD J3NQ ALM

-—

AjuQ Arewwnsg g/

AluQ 110day Y/

301A30 LNdLNO

1ioday 1B (1nejaq) S/H/

Ajewwng

HOLVH3IN3O
140434
3JAS

S3714
%S10

H311VWHOS

3Sd

1va's04y43

SAS'dW1iHH3

3Sd ¥’

3|1y NSIp 31easd

ainy

p-1 2anbra

CERCE

!

ain

Hy3

'$10413 40 § 10j AsanD '

H3L1ligm

¥344n8
3INIT NO

13

d334iNg

H3TANVH 13

‘73 "}Ul pUe SIUAIUOD J31NQ ALUM |

13
1Ivo

Xa

e

10

dd

Y

SH3TONVH
301A30

1-67

l.6.1.1

1/0 PROGRAMMING CONVENTIONS

The Error Log (EL) Handler - The RT-11 EL handler 1is a

MACRO-11 program that reads and stores errors and statistics and I1/0
operations. It consists of the following parts:

6.

Information and pointer area
Buffer initializer

On-line memory-to-file routine
Statistics and error collector
Statistics buffer

Error log buffer

The functions for the various parts of the EL handler are discussed in
the following section:

1.

The information and pointer area consists of the following:

a. An error buffer overflow counter containing the number of
free words in the error log buffer.

b. An offset pointer containing the byte offset to the
statistics buffer from the EL load address.

C. An offset pointer containing the byte offset to the error
log buffer from the EL load address.

d. The sequence number of the next error to be logged. If
the value 1is equal to 1, it indicates that no error has
been logged.

Buffer Initializer - This section of the EL handler is called
to initialize the error log buffer. The error log buffer can
be initialized in two ways:

a. As a ring buffer to save the newest data.
b. As a sequential buffer to save the oldest data.

On-Line Memory-To-File Routine - This part of the EL handler
allows the user programs or system programs (such as a
multi-user language system) to write the statistics buffer's
and error log buffer's contents to the disk-resident error
log file (ERRTMP.SYS). The program, however, must provide a
channel and queue element to accomplish the write operation.
In addition to this program-controlled method of writing the
buffers' contents to the ERRTMP.SYS file, facilities are
provided for accomplishing the same thing manually through a
system utility program (ERRUTL).

Statistics and Error Collection - This section of the EL
handler logs the read/write statistics and detects and stores
the error information. The information is retained in two
separate buffers until they are written to the disk-resident
error log file (ERRTMP.SYS).

The statistics buffer stores information on I/0 operations
for all supported devices since the last time that the buffer

was initialized. The information contained in this buffer is
as follows:

a. The number of successful read/write operations.

1-68

1.6.1.2
program

1.
2.

I/0 PROGRAMMING CONVENTIONS

b. The number of hard and soft I1/0 errors. A soft error is
defined as one that recovered or corrected itself. A
hard error is defined as one that did not recover or
correct itself and was reported back to the program.

c. The number of cache and memory parity errors.

The error buffer stores information on each hard or soft

device error and parity or cache errors. The information

contained in this buffer for a hard or soft device error |is
as follows:

a. The error sequence number and error type

b. The unit and device identification

c. The device's block address

d. The memory buffer address

e. The word count

f. The retry count

g. The number and content of all pertinent hardware
registers

The information contained in the error buffer for a cache or
memory parity error is as follows:

a. The error sequence number and error type
b. The PC and PS

c. The memory parity registers or cache error registers

The Error Utility Program (ERRUTL) - ERRUTL is a wutility

that performs the following operations:

Creates the system's error log file, ERRTMP.SYS.

Writes the error buffer and statistics buffer to the
ERRTMP.SYS file.

Allows the operator to query the number of errors in the
error buffer.

Initializes the EL handler after writing the buffer contents
or after creating the ERRTMP.SYS file upon an operator's
request.

Table 1-5 summarizes the commands that ERRUTL accepts.

1.6.1.3 Data FPormat Converter (PSE) - PSE is a system program that
performs the following operations:

1.
2.

Determines if the ERROR.DAT file exists on the system disk.

Creates the ERROR.DAT file if it does not already exist.

1-69

I/0 PROGRAMMING CONVENTIONS

3. Reads the ERRTMP.SYS file and converts the RT-11 specific
records to equivalent records in a DIGITAL standard error
logging format in the ERROR.DAT file.

1.6.1.4 Report Generator (SYE) - SYE is a system program that
performs the following operations:

1. Formats the ERROR.DAT file data into an error report, or
summary, or both.

2. Writes out the formatted data to a display, hard-copy, or
other device.

1.6.2 Using the Error Logging Subsystem

The error logging subsystem is useful in providing a history of system
performance that can be used to determine if specific devices are
becoming unreliable. However, the use of this subsystem does present
some restrictions to the overall RT-11 operating system. Among these
restrictions is the additional overhead on all I/0 transfers whether
an error occurred or not. The additional overhead on I/0 transfers
will be noticed only on time-dependent processes. In addition to the
increased amount of time, some memory space must be permanently given
up due to the increased size of the monitor and the presence of the EL
handler. Presently, the EL handler occupies a minimum of slightly
less than 1K words of memory.

Error logging is not included in the distributed RT-11 monitors. A
system generation must be performed to enable error logging. See the
RT-11 System Generation Manual for details.

1.6.2.1 Loading the EL Handler - The first thing that must be done to
use the error 1logging subsystem is to load the EL handler. The EL
handler is loaded and unloaded by the standard RT-11 LOAD and UNLOAD
commands.

To load the handler, type the following command in response to the
monitor's prompt (.). All commands must be terminated by a carriage
return.

.LOAD EL

It is desirable to have the EL handler loaded before other handlers
are loaded. This practice allows other handlers to be loaded and then
released, thus returning the memory space back to the system.

1.6.2.2 Using ERRUTL - After the EL handler is loaded, ERRUTL must be
used to create the error 1log file (ERRTMP.SYS) on the designated
device. To invoke the ERRUTL program, the user should type the
following command in response to the keyboard monitor's prompt (.).
All commands must be terminated by a carriage return.

.R ERRUTL
*

The asterisk
Commands to

I/0 PROGRAMMING CONVENTIONS

indicates that ERRUTL 1is ready to accept a command.

ERRUTL are of the form:

device-name: |[/options]
where:
device-name is the RT-11 physical device code for the output
device for the file ERRTMP.SYS. The format for
the device code is:
ddn
where
dd is the two-character RT-11 device
mnemonic.
n is the device unit number.
options represents one or more command options from Table
1-5.
Table 1-5
ERRUTL Options

Option Meaning

/Cl:s] Creates ERRTMP.SYS. The argument, s, specifies the file
size, 1in records. The default size is 20 records. One
record accommodates the full contents of the EL
handler's error and statistics buffers. ERRTMP.SYS need
not be created more than once.

/N Saves the most recent errors. When the buffer becomes
full, the o0ld data 1is replaced with the most recent
errors. The default operation is to save the oldest
errors. If the default 1is chosen, errors that occur
after the buffer becomes full are lost. This default
can be changed at SYSGEN time.

/Q Queries the EL handler for the number of errors currently
in the buffer.

/W Writes the contents of the buffer to ERRTMP.SYS and
empties the buffer.

The following example creates ERRTMP.SYS on device DMl:. It will

contain 50 r

ecords of the most recent errors.

*DM1:/C:50.,/N (¥ir)

The user should type to exit from ERRUTL.

NOTE

It ERRTMP.SYS is written by a program
other than ERRUTL, the file ERRTMP.SYS
must be created each time the system is
bootstrapped.

I/0 PROGRAMMING CONVENTIONS

Another function of the ERRUTL program is to query the EL handler for
the number of errors currently stored in the error buffer. Once the
amount of data stored in the EL handler is known, ERRUTL can be used

to write the contents of the error and statistics buffers to
ERRTMP.SYS.

The /Q option should be used to query the EL handler, as this example
shows:

.R ERRUTL (&&D)
*/Q (ReD)

The current sequence number and the number of bytes remaining in the
error buffer print on the console terminal. The error sequence
numbers begin with 1 and end with the number of errors in a full
buffer, plus 1. An error sequence number of 1 indicates that the
buffer is empty.

The /W option is used to write the buffer contents to ERRTMP.SYS.
Once ERRUTL is invoked, the format is as follows:

*device-name: /W
where:

device-name represents the device on which ERRTMP.SYS is
stored.

The buffers in the EL handler are written to the specified device and
re-initialized as a result of this procedure. The EL handler is
returned to the state it was in when it was first loaded.

The following command sequence, for example, causes the error and
statistics buffers to be written to DM0:ERRTMP.SYS.

*DMO : /W

1.6.2.3 Converting the Error Log File to a FORTRAN Data File - A
system program (PSE) is wused to convert the error 1log file
(ERRTMP.SYS) to a FORTRAN IV-compatible ERROR.DAT permanent disk file.
When the ERRTMP.SYS file is full, or when the user desires to get a
listing of the data even if the file is not full, the PSE program can
be used to read the ERRTMP.SYS file and convert it to FORTRAN-readable
records. Then another system program (SYE, discussed in the next
section) is run on the ERROR.DAT file to generate a hard-copy report
or display. The ERROR.DAT file is much larger than the ERRTMP.SYS
file. Thus, the ERROR.DAT file can accumulate several ERRTMP.SYS
files to provide a history of processor errors.

To invoke the PSE program, the user should type the following command
in response to the keyboard monitor's prompt (.). All commands must
be terminated by a carriage return.

.R PSE (Cren)
*

The asterisk indicates that PSE is ready to accept a command.
Commands to PSE are of the form:

output-filespec|[/option]=input-device:

1-72

I/0 PROGRAMMING CONVENTIONS

where:
output-filespec represents the device, file name, and file
type for the FORTRAN file, in the format:
ddn:filnam.typ[size]
where
dd is the two-character RT-11 device
mnemonic.
n is the device unit number.
filnam is the six-character file name.
typ is the three-character file type.
size is an optional argument that specifies
the size in blocks of the output file.
The default is 60 (decimal) blocks.
The default is DK:ERROR.DAT.
option represents a command option from Table 1-6.
input-device represents the input device. The default is
DK: .
Table 1-6
PSE Options
Option Meaning
/x[:size] Causes PSE to change the size of the existing

output file. If no size argument is specified,
the existing output file is doubled. If a size
is specified, the existing output file is
increased by that number (decimal) of blocks.

Wwhen PSE is invoked, it must first determine the state of the
ERROR.DAT file. If no current ERROR.DAT file exists, a new file must
be created. Under this condition, the user is requested to input the
number of blocks for the new file. If the ERROR.DAT file does exist,
PSE examines the file to ensure that there is enough space for the
records to be added.

The output file size can be changed at the program 1level in the
following manner:

1. PSE determines if the output file size 1is large -enough to
hold the new input records.

a. If the file size is sufficient, processing continues.

I/0 PROGRAMMING CONVENTIONS

b. If the file size is insufficient, the following error
message and prompts are printed out at the console:

PFSE-F-OUTFUT FILE TOO SMALL
MUST DELETE RECORDS FROM: MM:DD:YY
OK TO DELETE: Y OR N7

2. If N followed by a carriage return is entered, PSE prompts
for further input, and no records are deleted.

3. If Y followed by a carriage return is entered, records from
the specified days (month: day: vyear) are deleted from the
file and processing continues.

The records to be deleted are displayed at the terminal, and PSE can
be aborted if the operator wishes to retain the old records.

Once the file space has been examined, the formatting operation
begins. As records are formatted and added to the ERROR.DAT file,
they are deleted from the ERRTMP.SYS disk file. At the end of the
operation ERRTMP.SYS 1is left in its original null state and is
available to receive new data from the EL handler's buffers again. If

no further error 1logging is required, the operator can completely
delete the ERRTMP.SYS file.

The PSE program creates one error record for each memory or device
error in the buffer. This record contains a header field, a register
field and a program field.

In addition to the error record, PSE creates one statistics record for
each unit in use during the time span encompassed by this buffer of
error data. PSE also creates a statistics record for memory and cache
systems. This record contains a header field and a statistics field.
Each record contains an error sequence number starting with the next
sequential error number after the last one in the buffer. If no error
occurred for a device during the time span of the buffer, only the
statistics record is generated for read/write operations.

1.6.2.4 Generating the Error Report - The last operation and the end
objective of the error 1logging subsystem is to generate the error
report. This function is accomplished by using a system program named
SYE. SYE formats the ERROR.DAT file into an error report, an error
summary, or both. After the data is formatted into the desired type
of report, SYE writes out the file to a printer, visual display or
other device.

NOTE

Before running the SYE program, the user
must make certain that the system date
and time are current by executing the
DATE and TIME commands. If changes are
necessary, enter the following commands
in response to the monitor's prompt (.):

.DATE dd-mmm-yy D)
.TIME hh:mm:ss Crer)

1-74

I/0 PROGRAMMING CONVENTIONS

To invoke the SYE program, the user should type the following command
in response to the keyboard monitor's prompt (.). All commands must
be terminated by a carriage return.

.R SYE (kD)
*

The asterisk indicates that SYE 1is ready to accept a command.
Commands to SYE are of the form:

output-filespec=input-filespec|[/options]

where:

output-filespec represents the device, file name, and file
type that are destination for the error
report. If no file specification 1is given,
the default device 1is LP:. If a file name
and file type are specified, the default
device 1is DK:. The default file name and
file type are ERROR.LST.

input-filespec represents the device, file name, and file
type for the 1input file. The default is
DK:ERROR.DAT.

/options represents the valid options for SYE. If no
options are specified, SYE prints both an
error report and an error summary. Table 1-7
lists the options for SYE.

Table 1-7
SYE Options

Option Meaning

/R Generates the error report.

/S Generates the error summary.

default Generates both the error report and the

(when no option error summary.

specified)

An error report is a listing of the error types for each supported
device. The format of this report is very similar to the format of
the error log file. The error summary is a tally or summation of all
errors contained in the error log file. The output is selected by
user-specified options included in the command string.

1.6.2.5 Error Logging Example - The following commented listing is a
sample error 1log run. Following the commands are actual reports
produced by SYE, including detailed descriptions of them.

1-75

I/0 PROGRAMMING CONVENTIONS

RT-11SJ V03-02
PKMON-F-Command file rot found

+TIME 15:40:30
+DATE 14-FEE-78
LOAD EL

+R ERRUTL
*RKO:/C

.R ERRUTL
x/Q

SEQUENCE NUMBER=2
WORDS LEFT=243

XRKO /W

.R FSE
*XRKO :ERROR . DAT=RKO ¢
x~C

R SYE

XLF¢=/R/S

?SYE-I- 2. Fades
X*7C

The RT-11 system is bootstrapped.

The date and time are entered.

The EL handler is made resident in
memory.

The file ERRTMP.SYS is created on

RKO: since it did not already
exist.
The error logger has been

initialized and is ready to log
errors when the user proceeds with
regular system operation.

If the user has not altered the
application software to
automatically dump the memory error
buffer (see Section 1.6.3), ERRUTL
must be queried to determine
whether or not the buffer is full.

ERRUTL is queried for the number of
errors in the memory error buffer.

The memory error buffer is written
to RKO:.

PSE is invoked to convert the MACRO
records to standard FORTRAN-1IV
records. (Note that FORTRAN-IV is
not required to obtain error
logging support).

SYE 1is invoked to format the
ERROR.DAT file into an error report
and a summary, and to output it to
the line printer. SYE then prints
an informational message specifying
the number of pages printed.

I/0 PROGRAMMING CORVENTIONS

The device error report is printed first.

A SYE V83-81 SYSTEM ERROR REPORT COMPILED AT 14-FEB-78 15:44:89 PAGE

90100
s DISK DEVICE ERROR
c LOGGED 14-FEB-78 15:41:31
0 ENTRY NUMBER 1.
AOHORKKAOICIOIORND -
UNIT IDENTlPlCﬂTlON‘
UNIT PHYSICAL @ 1
F TVPE RXD1
SOFTWARE STRTUS INFORMATION:
G RETRIED e.
H NON-RECOVERED
DEVICE INFORMARTION:
REGISTERS:
1 RXCS 180140
J RXDB 0008000
x RXES 200120
QDDRESS AT ERROR:
BLOCK 6.
] TIQNSFER SI2E IN BVYTES: 1888
N PHYSICAL BUFFER ADDRESS START: 648.

The report is interpreted as follows:

Line Meaning

A SYE version identification and report title;
date and time report was generated.

includes

B Describes the type of error.

C Date and time the error occurred.

D Entry number for the particular error.

E The unit number of the device in error.

F The type of device in error.

G The number of times that RT-11 retried the operation in
error.

H Indicates whether or not RT-1l1l's error retry procedure
corrected the error.

I through K Show the device/controller registers at the time of the

error. The first column lists the register mnemonics.
The second column lists the contents of the registers.
The register information on retry operations is not
logged.

L The logical block number at the start of the transfer.

M The amount of data being transferred to the buffer of
the program incurring the error.

N The starting address of the buffer in the program

incurring the error.

I/0 PROGRAMMING CONVENTIONS

The device statistics report is printed next.

Hofololof
A DEVICE STATISTICS
8 LOGGED 14-FEB-78 15:41:31
Cc ENTRY NUMBER 2.

UNIT IDENTIFICATION:
O UNIT PHYSICAL # [}
E TYPE RKB2/RKBS/RKOSF

DEVICE STRTISTICS FOR THIS UNIT:
F # SOFT ERROR 2.
G # HARD ERRORS 8.
H ¢ OF READ SUCCESSES: 22.
! # OF WRITE SUCCESSES: 8.

HOIOAOIORAOK KKK IORIOIOIIOORCRIKAOK K HOIRAONOKAHORIHKHARIIAK HOKAORK
DEVICE STATISTICS

LOGGED 14-FEB-78 15:41:31

ENTRY NUMBER 3.

UNIT IDENTIFICATION:
UNIE PHYSICAL » 1

DEVICE STATISTICS FOR THIS UNIT:

* SOFT ERRORS: 8.
* HARD ERRORS: 1.
OF READ SUCCESSES: 8.
OF WRITE SUCCESSES: 9.
The report is interpreted as follows:
Line Meaning
A Shows that device statistics follow.
B Date and time the statistics were logged.
C The entry number of the error in the error log.
D The unit number for the device in error.
E The type of device in error.
F The number of soft errors that were logged
device.
G The number of hard errors that were logged
device.
H The number of successful reads that

without retries for the device.

I The number of successful writes that
without retries for the device.

1-78

per formed

per formed

I/0 PROGRAMMING CONVENTIONS

The summary report is printed last.

SYE V83-81 SYSTEM ERROR REPORT COMPILED AT 14-FEB-78 15:44:34 PAGE 2.

SUMMARY REPORT
A REPORT FILE ENVIRONMENT
8 INPUT

FILE DK :ERROR .DAT

¢ QUTPUT FILE LP :ERROR .LST

D SWITCHES /R/S

€ DATE OF FIRST ENTRY 14-FEB-78 15:41:31

F DATE OF LAST ENTRY 14-FEB-78 15:41:31
NTRIES PROCESSED 3.

GE

H ENTRIES MISSING

1 UNKNOWN ENTRY TYPES ENCOUNTERED

J FIELD FORMAT ERRORS ENCOUNTERED

K UNKNOWN DEVICES ENCOUNTERED

L DEVICE STRTISTICS PROCESSED

M MEMORY STATISTICS PROCESSED

N DEVICE ERRORS PROCESSED

O PARITY ERRORS PROCESSED
P -MEMORY

Q -CACHE

R -UNKNOWN

OO0~ ONOOO®

SYSTEM ERROR REPORT SUMMARY

s RKB3/RKBS/RKBSF UNIT+ 8
T SOFT 8.
U HARD 8.
v READ SUCCESSES 22.
W WRITE SUCCESSES 8.

SYSTEM ERROR REPORT SUMMARY

RXB1
SOFT

HARD
READ SUCCESSES
WRITE SUCCESSES

UNIT

The summary report is interpreted as follows:

Line

A through F

Meaning

Describe the SYE input and output files, and the date
and time of the first and last entries in the input
file.

The number of error entries formatted in the report.

The number of errors missed because the occurrence of
another error prevented a previous one from being
logged.

The number of unknown errors encountered by SYE. An
unknown error is any entry that the current version of
SYE cannot format. This situation can occur if an old
version of SYE has been run.

The number of times that the input file encountered a
data structure error (field format error). Such
encounters can indicate that the wrong version of the
pre-formatter PSE was used.

The number of entries that referred to a device not
supported by SYE. Such an entry can be encountered if
an application has implemented error 1logging on a
device that SYE does not recognize.

I/0 PROGRAMMING CONVENTIONS

where: wcnt =1 initializes the EL handler and
configures the buffer to retain the
newest errors.

=2 initializes the EL handler and

configures the buffer to retain the
oldest errors.

=3 returns four words of information in the
buffer "buf".

The four words returned in buf for code 3 are as follows:

word 1 the number of bytes remaining in the error buffer. If

this word 1is equal to 0, no space remains. The buffer
is full.

2 = the offset from the load point of the handler to the
start of the statistics buffer. Note that a .DSTATUS
returns the load address+6.

3 = the offset from the load point of the handler to the
start of the error buffer.

4 = the sequence number of the next error. This value is
reset to 1 when the EL handler is initialized.

1.6.3.3 Calling the Error Logger from a Handler - The error logger
can be called from a user-written device handler. EL should be called
on every successful transfer. If possible, the handler should
distinguish non-recoverable errors (such as write-locked volume,
unmounted volume, etc.) and not log them. The error 1logger should
also be called on an initial error and on every retry for that error.
Eventual success should be reported by a -1 in the high byte of R4;
complete failure should be reported by a 0. The error logger keeps
track of both soft (recoverable) and hard (non-recoverable) errors.

When the error logger is called from a handler, the call must be made
from fork level. This is because the error logger is not re-entrant.
Fork must be used to serialize access to the logger.
The call for the error logger is:

JSR PC,@SELPTR

where:

SELPTR is a pointer to the error 1logger in the table of
pointers constructed by the .DREND macro.

At the time of the call, the error 1logger requires the following
information:

R2 must point to a buffer in the driver that 1is large
enough to temporarily store all the device registers.

R3 the 1low byte must contain the number of device

registers to 1log; the high byte must contain the
maximum retry count.

1-82

I/0 PROGRAMMING CONVENTIONS

R4 the high byte must contain the device identification
code (extracted from the low byte of the device status
word); the low byte must contain a success code:

-1 for a successful transfer

0 for a transfer that has failed completely (the
retry count is exhausted)

n a non-zero retry count for a transfer that failed

but is being tried again
RS must point to the third word of the queue element.

After the error logger is called, RO through R3 are restored; R4 and
R5 are destroyed.

1.6.4 Building the EL Handler

The EL handler is an option that must be SYSGENed into the system
along with the fork processor to have a functioning error logging
capability. In addition to these software components, the system must
contain a disk and at least 16K (words) of memory.

The EL handler contains the following conditional assembly parameters,
which are set through a SYSGEN or contained in SYCND.MAC.

1. ERLSB the error buffer size in 256-word blocks. The

default value is 1.

2. ERLSU

the number of specific device units that can be
logged. The maximum number is 35 and the default
value is 10.

3. ERLSW

the buffer configuration. 1If set to 1, the newest
errors are kept. If not, the default value of 0 is
assumed, and the oldest errors are kept. The
buffer configuration can be changed by the ERRUTL
program when the ERRTMP.SYS file is created.

4. ERLSA

the on-line memory to file routine. 1If set to 1,
it is included. The default value is 0 indicating
that the on-line memory to file routine 1is not
included.

The EL handler is assembled and linked as follows:

.R MACRO
*EL=SYCND,EL
*7C

.R LINK
*EL.SYS=EL
*°C

.

1-83 September 1978

CHAPTER 2

PROGRAMMED REQUESTS

A number of services at the machine language level that the monitor
regularly provides to system programs are also available to
user-written programs. These include services for file manipulation
and command interpretation, and facilities for input and output
operations. User programs call these monitor services by means of
"programmed requests", which are assembler macro calls written into
the user program and interpreted by the monitor at program execution
time.

2.0 PROGRAMMED REQUESTS WITH EARLY VERSIONS OF RT-11

Programmed requests were implemented differently in each major release
of RT-11. The following sections outline the changes that were made
to the programmed requests.

2.0.1 Version 1 Programmed Requests

The earliest programmed requests, such as .READ and .WRITE, were
provided with the first release of RT-11. They were designed for a
single user, single job environment. As such, they differ
significantly from Version 2 and Version 3 programmed requests.
Arguments for Version 1 requests were pushed on the stack instead of
being stored in an argument list as they are now. The channel number
was limited to the range 0 through 17; more channels can be allocated
in later versions. Finally, no arguments could be omitted in the
macro call.

Programs written for use under Version 1 assemble and execute properly
under Version 3 when the ..Vl.. macro call is used (see Section
2.3.1.1). The ..Vl.. macro call causes all Version 1 programmed
requests to expand exactly as they did in Version 1. Version 2 and
Version 3 programmed requests expand as they should for Version 2 and
Version 3, respectively. However, it is to the user's advantage to
convert Version 1 programs so they use the current format for
programmed requests. See Section 2.5 for instructions on converting
Version 1 macro calls to the current format.

2.0.2 Version 2 Programmed Requests
The second major release of RT-11 brought with it some new programmed

requests and a different way of handling arguments for both the new
and the pre-existing requests. The new programmed requests reflected

2-1 September 1978

PROGRAMMED REQUESTS

RT-11's ability to run a foreground job as well as a background job;
they provided means to suspend and resume the foreground job, and to
share messages and data between the two jobs.

The major difference between Version 1 and Version 2 programmed
requests is that in Version 2, arguments for the macro calls are
stored in an argument list instead of on the stack. Another
substantial difference is that arguments can be omitted from the macro
calls in Version 2. If the area argument is omitted, the macro
assumes that RO points to a valid argument block. If any of the
optional arguments are not present, the macro places a zero in the
argument list for the corresponding argument. Version 1 programmed
requests were modified to incorporate these changes, and the ..Vl..
macro was provided so that Version 1 programs could execute properly
under Version 2 without further modification.

Programs written for use under Version 2 assemble and execute properly
under Version 3 when the ..V2.. macro call is used (see Section
2.3.1.1). The ..V2.. macro call causes all pre-Version 3 programmed
requests to expand in Version 2 format. Version 3 programmed
requests, if any, always expand in Version 3 format.

2.0.3 Version 3 (or later) Programmed Requests

The programmed requests for Version 3 provide means for user programs
to access regions in extended memory and to wuse more than one
terminal. The chief difference between Version 3 and Version 2
programmed requests is the way in which omitted arguments are handled.
In Version 3, blank fields in the macro calls do not cause zeros to be
entered into the argument block. 1In fact, the corresponding argument
block entry for the missing field is left untouched.

This change can have a significant impact on user programs. If an
argument block within a program is to be used many times for similar
calls, a programmer can save instructions by setting up the argument
block entries only once (at assembly or run time) and then leaving the
corresponding fields blank in the mmacro call.

However, users should keep in mind the fact that zeros are not
substituted for missing fields. Programs that make this assumption
operate incorrectly and exhibit a wide range of symptoms that can be
hard to diagnose. Therefore, the necessary instructions must be
written to fill the argument block, if a programmed request is 1issued
with fields left blank in the arqument list.

Programmed requests from previous versions were modified to
incorporate this change, and the ..V2.. macro was provided so that
Version 2 programs could execute properly under Version 3 without
further modification.

The macro definitions are included in the file SYSMAC.MAC; Appendix B
provides a listing of SYSMAC.MAC.

The FORTRAN programmer should note that the system subroutine library
gives him some of the same capability (through FORTRAN) to use the
programmed requests that are available to the assembly language
programmer and described in this chapter. FORTRAN users should first
read this chapter and then read Chapter 4.

2-2 September 1978

PROGRAMMED REQUESTS

2.1 FORMAT OF A PROGRAMMED REQUEST

The basis of a programmed request is the EMT (emulator trap)
instruction, used to communicate information to the monitor. When an
EMT is executed, control is passed to the monitor, which extracts
appropriate information from the EMT instruction and executes the
function required. The low-order byte of the EMT instruction contains
a code that is interpreted as follows:

Low-Order Byte Meaning
of EMT
377 Reserved; RT-11 ignores this EMT and returns

control to the user program immediately.

376 Used internally by the RT-11 monitor; this EMT
code should never be used by user programs.

375 Programmed request with several arguments: RO
must point to a list of arguments that designates
the specific function.

374 Programmed request with one argument: RO contains
a function code in the high-order byte and a
channel number (see Section 2.2.1) or code in the
low-order byte.

360-373 Used internally by the RT-11 monitor; these EMT
codes should never be used by user programs.

340-357 Programmed request with arguments on the stack
and/or in RO.

0-337 Version 1 programmed regquest. These EMTs use
arguments both on the stack and in RO. They are
supported for binary compatability with Version 1
programs.

A programmed request consists of a macro call followed, if necessary,
by one or more arguments. All programmed requests start with a period
(.) to distinguish them from user defined symbols and macros.
Arguments supplied to a macro call must be legal assembler expressions
since arguments are used as source fields in instructions (such as
MOV) when the macros are expanded at assembly time. The following two
formats are accepted by the monitor.

Format 1l: .PRGREQ argl,arg2,...argn
Format 2: .PRGREQ area,argl,arg2,...argn

Format 1 contains the argument list argl through argn; no argument
list pointer is required. Macros of this form generate either an EMT
374 or one of the EMTs 340-357. Certain arguments for this form can
be omitted.

In format 2, area is a pointer to the argument block that contains the
arguments argl through argn. This form always causes an EMT 375 to be
generated. Blank fields are permitted; however, if the area argument
is empty, the macro assumes that RO points to a valid argument block
(see Section 2.2.3). If any of the fields argl to argn are empty, the
corresponding entries in the argument list are left untouched. Thus,

.PRGREQ area,al,a2

2-2.1 September 1978

PROGRAMMED REQUESTS

points RO to the argument block at area and fills in the first and
second arguments, while:

.PRGREQ area

points RO to the block, and fills in the first word (request code) but
does not fill in any other arguments.

The call:
.PRGREQ ,al

assumes RO points to the argument block and fills in the al argument,
but leaves the a2 argument alone. The call:

. PRGREQ

generates only an EMT 375 and assumes that both RO and the block to
which it points are properly set up.

The arguments to RT-11 programmed request macros all serve as the
source field of an instruction that moves a value into the argument
block or RO. For example:

.PRGREQ CHAR
expands into:

MOV CHAR,RO
EMT 374

Care should be taken to make certain that the arguments specified are
legal source fields and that the address accurately represents the
value desired. If the value is a constant or symbolic constant, the
immediate addressing mode [#] should be used; if the value is in a
register, the register mnemonic [Rn] should be used; if the value is
indirectly addressed, the appropriate register convention is necessary
[@Rn]; and if the value is in memory, the label of the location whose
value is the argument is used.

Following are some examples of both correct and incorrect macro calls.
Consider the general request:

.PRGREQ area,argl,...argn
A more common way of writing a request of this form is:
.PRGREQ #area,#argl,...#argn

In this format, the address of area is put into register 0. Area is

the tag that indicates the beginning of the argument block. For
example:

.PRGREQ #AREA,#4

AREA: .WORD 0,0,0

2-3

PROGRAMMED REQUESTS

When a direct numerical argument is required, the # causes the correct
value to be put into the argument block. For example:

.PRGREQ #area,#4
is correct, while:

.PRGREQ #area,4

is not. This form interprets the 4 as meaning "move the contents of
location 4 into the argument block." Instead, the number 4 itself
should be moved into the block.

If the request is written as:
.PRGREQ area, #4

it is interpreted as "use the contents of location area as the 1list
pointer”, when the address of area is actually desired. This
expansion could be used with the following form:

.PRGREQ LISTI1, #4

LIST1: .WORD AREA
AREA: .WORD 0,0,0

In this case, the content of location LIST1 is the address of the
argument list. Similarly, this form is correct:

.PRGREQ LIST1,NUMBER

LIST1l: .WORD AREA
NUMBER: .WORD 4

In this case, the contents of the locations LIST1 and NUMBER are the
argument list pointer and data value, respectively.

NOTE

All registers except RO are preserved
across a programmed request. (In
certain cases, RO contains information
passed back by the monitor; however,
unless the description of a request
indicates that a specific value |is
returned in RO, the contents of RO are
unpredictable upon return from the
request). With the exception of calls
to the Command String Interpreter (CSI),
the position of the stack pointer is
also preserved across a programmed
request.

2.2 SYSTEM CONCEPTS

Some basic operational characteristics and concepts of RT-11 are
described in the following sections.

PROGRAMMED REQUESTS

2.2.1 Channel Number (chan)

A channel number is a logical identifier for a file or "set of data"
used by the RT-11 monitor. It can have a value in the range 0 to 377
(octal)--0 to 255 (decimal). In RT-11, a channel is the 1logical
connection between a channel number and all information that must be
maintained between data transfers, such as device and file name. When
a file is opened on a particular device, a channel number is assigned
to that file. To refer to an open file, it is only necessary to refer
to the appropriate channel number for that file.

2.2.2 Device Block (dblk)

A device block is a four-word block of Radix-50 information that
specifies a physical device, file name and file type for an RT-11
programmed request. For example, a device block representing the file
FILE.TYP on device DK: could be written as:

.RAD50 /DK /
.RAD50 /FIL/
.RADS0 /E /
.RADS50 /TYP/

The first word contains the device name, the second and third words
contain the file name, and the fourth contains the file type. Device,
name, and file type must each be left-justified in the appropriate
field. This string could also be written as:

.RADS0 /DK FILE TYP/

Note that spaces must be used to fill out each field. Note also that
the colon and period separators do not appear in the actual Radix-50
string. They are used only by the Command String Interpreter to
delimit the various fields.

2.2.3 EMT Argument Blocks

Programmed requests that call the monitor via EMT 375 use RO as a
pointer to an argument list. In general, this argument block appears
as follows when the EMT instruction is executed:

address contents
. function | channel
RO - area: ; number
[RO+2]) argument 1
[RO+4] argument 2

[RO+(n=2)]

RO points to location x. The even (low-order) byte of location x
contains the channel number named in the macro call. If no channel
number is required, the byte is set to 0. The odd (high-order) byte
of x is a code specifying the function to be performed. Locations
x+2, x+4, etc., contain arguments to be interpreted. These are
described in detail under each request.

PROGRAMMED REQUESTS

Requests that use EMT 374 set up RO with the channel number in the
even byte and the function code in the odd byte. They require no
other arguments.

2.2.4 Important Memory Areas

The memory areas for vector addresses, the resident monitor and
certain system communication information are particularly important
for RT-11's operation. Some addresses in these areas can be used by
user programs, but others must not be used under any circumstances.

2.2.4.1 Vector Addresses (0-37 octal, 60-477 octal) - Certain areas
of memory between 0 and 477 are reserved for use by RT-11. The
monitor does not load these locations from the memory image file when
it initiates a program. (The monitor RUN command does not load these
words, for example.) However, no hardware memory protection is
supplied. Therefore programs should never alter the contents of these
areas. If they are destroyed by a program, the system must be
re-bootstrapped or the program must restore them.

Locations Contents
0,2 Monitor restart. Executes the .EXIT request and
returns control to program. Modifying these

locations while using the XM monitor always causes
a system crash.

4,6 Time out or bus error trap; RT-11 sets this to
point to its internal trap handler.

10,12 Reserved instruction trap; RT-11 sets this to
point to its internal trap handler.

30,32 EMT trap vector.

34,36 TRAP instruction vector (in an FB or XM
environment this area is loaded by R, RUN, GET and
FRUN.

40-51 RT-11 system communication area (this area is
loaded by R, RUN and GET).

52-57 RT-11 system communication area (see Section
2.2.4.3, below).

60,62 Console Terminal input interrupt vector.

64,66 Console Terminal output interrupt vector.

100,102 KW1lL vector.

104,106 KWllP vector.

160,162 RLOl Disk vector.

200,202 LP11/LS11/LPV11 Line printer vector.
204,206 RF11,RS03/4 vector.

210,212 RK611/RK06, RKO7 Disk pack vector.

2-6

PROGRAMMED REQUESTS

Locations Contents

214,216 TCll vector.

220,222 RK11/RKV11l RKO5 Disk vector.

224,226 TJUl6,TM11,TS03 Magnetic tape vector.
250,252 KT1l1l Memory management fault vector.
254,256 RP04/11 Disk pack vector.

260,262 TAll Cassette vector.

264,266 RX11/RXV11l RX01,RX211/RX2V1 RX02 Diskette vector.
320,322

324,326) VT11/VS60 Graphics terminal vectors.
330,332

2.2.4.2 Resident Monitor - Chapter 1 describes the placement of
monitor components when the SJ monitor, the FB monitor or the XM
monitor is brought into memory; the approximate size of each monitor

component and the size of the area available for handlers and user
programs is included.

2.2.4.3 System Communication Area - RT-11 uses bytes 40-57 to hold
information about the program currently executing, as well as certain

information used only by the monitor. A description of these bytes
follows:

Bytes Meaning and Use

40,41 Start address of job. When a file is 1linked to
create an RT-11 memory image, this word is set to
the starting address of the job. When a

foreground program is executed, the FRUN processor
relocates this word to contain the actual starting
address of the program.

42,43 Initial value of the stack pointer. If it is not
set by the user program in an .ASECT, it defaults
to 1000 or the top of the .(ASECT in the
background, whichever is larger. If a foreground
program does not specify a stack pointer in this
word, a default stack (128 decimal bytes) is
allocated by FRUN immediately below the program.
The initial stack pointer can also be set by an
option of the linker.

44,45 Job Status Word (JSW). Used as a flag word for
the monitor. Certain bits are maintained by the
monitor exclusively while others may be set or
cleared by the user job.

Since the currently unassigned bits may be used in
future releases of RT-11, user programs should not
use these bits for internal flags.

Bytes

PROGRAMMED REQUESTS

Those bits in the following 1list marked by an
asterisk are bits that can be set by the user job.

Meanings and Use

Bit Meaning
Number

15 USR swap bit. (SJ only.) The monitor
sets this bit when programs do not
require the USR to be swapped. See
Section 2,2.5 for details on USR
swapping.

*14 Lower-case bit. Disables automatic
conversion of lower-case to upper-case
when set. EDIT sets this bit when the
EL command is typed.

*13 Reenter bit. When set, this bit
indicates that the program may be
restarted from the terminal with the
REENTER command.

*12 Special mode TT bit. When set, this bit
indicates that the job is in a “special”
keyboard mode of input. Refer to the
explanation of the .TTYIN/.TTINR
requests for details.

10 Virtual image bit. (XM only.) When set,
this bit indicates that the job to be
loaded is a virtual image. It must be
set in the execute file (with a .ASECT
or PATCH) before the program is loaded.

*11 Pass line to KMON bit. If this bit is
set when a user program exits, it
indicates that the user program is
passing a command line to the KMON. The
command line is stored in the CHAIN
information area (500-776). Refer to
the .EXIT example in Section 2.4.15.
This bit is not available to foreground
jobs under the FB and XM monitors.

9 Overlay Bit. Set (by the linker) if the
job uses the linker overlay structure.

8 CHAIN bit. If this bit is set in a
job's save image, words 500-776 are
loaded from the save file when the job
is started even if the job is entered
with .CHAIN. (These words are normally
used to pass parameters across .CHAINs.)
The bit is set when a job is running if
and only if the job was actually entered
with .CHAIN.

2-8

PROGRAMMED REQUESTS

Error halt bit. (SJ only.) When set,
this bit indicates a halt on an I/O
error. If the user desires to halt when
any I/0 device error occurs, this bit
should be set. (SJ only.)

Bytes

46,47

50,51

52

PROGRAMMED REQUESTS

Meaning and Use

Bit Meaning
Number
*6 Inhibit TT wait bit. For use with the

FB monitor. When set, this bit inhibits
the monitor from entering a console
terminal wait state. Refer to the
sections concerning .TTYIN/.TTINR and
.TTYOUT/.TTOUTR for more information.

*5 Filter escape sequences. This bit |is
ignored if bit 4 is not set. Bit 5 is
set to specify that escape sequences are
to be echoed (if not in special mode),
but not passed to the program. If this
bit is not set, escape sequences are
passed to the wuser program, but not
echoed.

*4 Process escape sequences. This bit is
set to enable any escape sequence
support. If this bit is not set, the
same support 1is provided as in version

3 Reserved for system use. Users should
not attempt to use this bit.

2-0 Reserved for internal use.

USR load address. Normally 0, this word can be
set to any valid word address in the user's
program. If 0, the USR is loaded in the default
location through an address contained in offset
266 of RMON. If this value is not 0, the USR is
simply loaded at the specified address (address in
word location). See Section 2.2.5, Swapping
Algorithm, for details of use.

High memory address. The monitor maintains the
highest address the user program can use in this
word. The linker sets it initially to the high
limit wvalue. It is modified only by the .SETTOP
monitor request.

EMT error code. If a monitor request results in
an error, the code number of the error is always
returned in byte 52 and the carry bit 1is set.
Each monitor <call has its own set of possible
errors. It is recommended that the user program
refer to byte 52 with absolute addressing rather
than relative addressing. For example:

ERRBYT = 52

TSTB ERRBYT ;s RELATIVE ADDRESSING
TSTB @#ERRBYT ;ABSOLUTE ADDRESSING
NOTE

Location 52 must always be addressed as
a byte, never as a word, since byte 53
has a different function.

2-9

Bytes

53

PROGRAMMED REQUESTS

Meaning and Use

User program error code (USERRB). If a user
program encounters errors during execution, it
indicates the error by using this byte. The KMON
examines this byte when a program terminates. 1If
a significant error is reported by the user
program, the KMON can abort any indirect command
files in use. This prevents spurious results from
occurring if subsequent commands in the indirect
file depend on the successful completion of all
prior commands.

A program can exit with one of the following
states:

Success
Warning
Error

Severe Error

The program status is successful when the
execution of the program is completely free of any
errors.

The warning status indicates that warning messages
occurred, but the execution of the program is
completed. The MACRO assembler sets the warning
level bit when it detects errors at assembly time.

The error status indicates that a user error
occurred and the execution of the program was not
completed. This level is used when the program
produces an output file even though the file may
contain errors. A compiler can use the error
level to indicate that an object file was
produced, but the source program contains errors.
Under these conditions, execution of the object
file will not be successful if the module
containing the error is encountered.

The severe error status indicates that the program
did not produce any usable output, and any command
or operation depending upon this program output
will not execute properly. This type of error can
result when a resource needed by the program to
complete execution is not available -- for
example, insufficient memory space to assemble or
compile a user program. The user program reports
status to RT-11 through byte 53, returning through
a hard or soft exit.

The following bits correspond to the four status
levels discussed previously.

2-10

Bytes

54,55

56

57

PROGRAMMED REQUESTS

Meaning and Use

Bit Meaning (if set to 1)
7-4 Reserved for future use (should not
be set or cleared by program).
3 Severe error
2 Error
1 Warning
0 Success

Programs should never clear byte 53 and should
only set it through a BISB instruction, as in the
following example:

USERRB = 53
SUCCss =1
WARNS = 2
ERRORS = 4
SEVERS = 10
ERROR: BISB #ERRORS,@#USERRB ;SET ERROR
; STATUS
CLR RO ;HARD EXIT
LEXIT

Address of the beginning of the resident monitor.
RT-11 always loads the monitor into the highest
available memory locations; this word points to
its first location. It must never be altered by
the user. Doing so causes RT-1l1 to malfunction.

Fill character (seven-bit ASCII). Some high-speed
terminals require filler (null) characters after
printing certain characters. Byte 56 should
contain the ASCII seven-bit representation of the
character after which fillers are required.

Fill count. This byte specifies the number of
fill characters that are required. The number of
characters is determined by hardware. 1If bytes 56
and 57 equal 0, no fill is required.

The terminals requiring fill characters are:

Word 56
Terminal No. of fills Value

Serial LA30 @ 300 baud 10 after <RET> 5015

Serial LA30 @ 150 baud 4 after <RET> 2015
Serial LA30 @ 110 baud 2 after <RET> 1015
VTO05 @ 2400 baud 4 after <LF> 2012
VTO05 @ 1200 baud 2 after <LF> 1012
VTO05 @ 600 baud 1 after <LF> 412

2-11

PROGRAMMED REQUESTS

2.2.5 Swapping Algorithm

Programmed requests are divided into two categories according to
whether or not they require the USR to be in memory (see Table 2-2).
Any request that requires the USR in memory can also require that a
portion of the user program be saved temporarily in the system device
swap file (that is, be "swapped out" and stored in the file SWAP.SYS)
to provide room for the USR. The USR is then read into memory. 1In
the XM monitor, the USR is always resident, and therefore never
swapped. During normal operations, this swapping is invisible to the
user. However, it is possible to optimize programs so that they
require little or no swapping.

The following items should be considered if a swap operation is
necessary:

1. The background job - If a .SETTOP request in a background job
specifies an address beyond the point at which the USR
normally resides, a swap is required when the USR is called.
More details concerning the .SETTOP request are in Section
2.4.3.6.

2. The value of location 46 - If the user either assembles an
address into word 46 or moves a value there while the program
is running, RT-11 uses the contents of that word as an
alternate place to swap the USR. If location 46 is 0, this
indicates that the USR will be at its normal location in high
memory.

3. Monitor offset 374 - The contents of monitor offset 374
indicates the size of the USR in bytes. This can be useful
in planning memory allocation. (See Section 2.2.6.)

NOTES

1. If the USR does not require
swapping, the value in location 46
is ignored. Swapping is a
relatively time-consuming operation
and should be avoided, if possible.

2. A foreground job must always have a
value in 1location 46 unless it is
certain that the USR will never be
swapped. If the foreground job does
not allow space for the USR and a
swap 1is required, a fatal error
occurs. (The SET USR NOSWAP command
ensures that the USR is always
resident.)

3. Care should be taken when specifying
an alternate address in location 46.
The SJ monitor does not verify the
legality of the USR swap address,
and if the area to be swapped
overlays the resident monitor, the
system is destroyed.

2-12

The user should also take care

PROGRAMMED REQUESTS

that

the USR is never swapped over any of

the following
stack;

calls

device
routines being used when the USR

areas: the program
any parameter block for
to the USR; any I1/0 buffers,
handlers, or completion
is

called.

For example:

«TITLE USK, MAC

JTHIS 1S AN EXAMPLE OF THE wAY A BACKGRCUND PKOGRAM CAN AVOID
JUNNECESSARKY USR SwaPPING,

JMCALL LSETTUP, ,EXIT,, GvAL
USRLCC 3 2oo pPCINTEX TO USR LOCATION IS
JAT 266 BYTES INTOU RMQON,
START
JLvag sAREA,mUS®OC JRe => USK
ST c(hd) $PCINT JUST BELOUW
(1 Roy 0850 JOCES USR SnAP QVER US?
-LDY 1% iNOy 0K
#Cv 8e2,KY sYES, USR MUST SwaAP
183 SETTULP JASK FOR MEMORY UP TQO USR
mlv A, HILIm gJR@ ® NIGH LIMIT OF MEMORY
JACTUALLY GRANTED BY MONITOR,
JEXIT
HILIPE ,aukD o $CONTAINS HI LIMIT OF MEMORY
AREA; JBLuw 2 $EMT ARGUMENT BLOCK
oENC START

2.2.6 Offsget Words

There are several words that always have fixed positions
start of the resident monitor.
programs to be able to access these words.

the
.GVAL programmed request
.GVAL #area,#offse

Here, area is a two-word
following list.

OFFSET (Bytes)

266

270

relative to
It is often advantageous for user
This is done wusing the

in the following form:

argument block and offse is a number from the

Contents

Start of normal USR area. This is where the
USR resides when it is called into memory and
location 46 is 0. It is useful to be able to
perform a .SETTOP in a background job so that
the USR does not swap, and once called in,
remains resident. (An example is in Section
2.2.5.)

Address of
The exit
management
handlers
complete.
RT-11 must

I/0 exit routine for all devices.

routine is an internal queue
routine through which all device
exit once the 1I/0 transfer is
Any new device handlers added to
also use this exit location.

OFFSET (Bytes)

272

275

276

277

300

PROGRAMMED REQUESTS

Contents

Special device error word. This word is used
by non-RT-11 file structured devices (such as
MT and CT) to report errors to the monitor.

Unit number of system device (device from
which system was last bootstrapped).

Monitor version number. The user can always
access the version number to determine if the
most recent monitor is in use. For RT-11
Version 3B, this value is 3.

Monitor release level. This number
identifies the release level of the monitor
version specified in byte 276. For version

3B, the value is 2.

Configuration word. This is a string of 16
bits that indicates information about either
the hardware configuration of the system or a
software condition. Another configuration
word is available at offset 370 that contains
additional data. The bits and their meanings
are:

Bit # Meaning
0 0 = SJ Monitor
1 = FB Monitor if bit 12 is not

set, XM monitor if bit 12 is
set

2 1 = graphics display hardware
exists (VT1ll or VSé60)
3 1 = RT-11 BATCH is in control
of the background
5 0 = 60-cycle clock
1 = 50-cycle clock
6 1 = FP1l floating-point
hardware exists
7 0 = No foreground job is in memory
1l = Foreground job is in memory
8 1l = User is linked to the graphics
scroller
9 1 = USR is permanently resident
(via a SET USR NOSWAP -
USR is always resident in XM)
11 1l = Processor is a PDP-11/03 (that
is, there is no program status
word on this processor)
12 1 = a mapped system running under
XM monitor
13 1l = The system clock has a status
register
14 1l = KWll-P clock exists and can be

used by programs

15 1 = either an L clock or a P clock
(depending on the system
generation procedure used) is
present

The other bits are reserved for future use
and should not be used by user programs.

2-14

OFFSET (Bytes)

304-313

314

324

354

360

362

366

370

PROGRAMMED REQUESTS

Contents

These locations contain the addresses of the
console terminal control and status registers
(but they are not used when the
multi-terminal option is present). The order
is:

304 Keyboard status
306 Keyboard buffer
310 Printer status
312 Printer buffer

These locations can be changed, for example,
to reflect a second terminal; thus RT-11 can
be made to run on any terminal connected to
the machine through the DL1ll1 terminal
interface.

The maximum file size allowed in a 0 1length
.ENTER. This can be adjusted by the user
program or by using the PATCH program to be
any reasonable value. The default value is
177777 (octal) blocks, allowing an
essentially unlimited file size.

Address of .SYNCH entry. User interrupt
routines can enter the monitor through this
address to synchronize with the job they are
servicing.

Address of VT1l or VS60 display processor
display stop interrupt vector.

Move to PS routine. The routine is called by
the .MTPS macro to do processor independent
moves to the program status word.

Move from PS routine. The routine is called
by the .MFPS macro to do processor
independent moves from the program status
word.

Indirect file and command language state
word.

Extension configuration word. This 1is a
string of 16 bits used to indicate the
presence of an additional set of hardware
options on the system. The bits and their
meanings are:

Bit # Meaning

cache memory is present

parity memory is present
readable switch register is
present

writeable console display
register is present

= EIS option is present

N O
(-

w
—
"

—
|

PROGRAMMED REQUESTS

OFFSET (Bytes) Contents
Bit # Meaning
9 0 = VT1l display hardware exists if

bit 2 at offset 300 is set

1 = VS60 display hardware exists if
bit 2 at offset 300 is set
14 1 = processor is PDP-11/70
15 1l = processor is PDP-11/60

The other bits are reserved for future use
and should not be used by user programs.

372 SYSGEN options word. The bit pattern
indicates important SYSGEN options and must
not be modified by user programs or patches.
The bits and their meanings are:

Bit # Meaning
0 1 = error logging option is present
1 1 = memory management option is
present
2 1 = device I/0 time-out option is
present
9 1l = memory parity option is present
10 1 = SJ mark time option is present
11-12 00 = no escape sequences recognized
01 = option to recognize DIGITAL
escape sequences is present
10 = option to recognize ANSI escape
sequences is present
13 1 = multi-terminal option is present

The other bits are reserved for future use
and should not be used by user programs.

374 Size of USR in bytes. Programs should use
this information to dynamically determine the
size of the region needed to swap the USR.

377 Depth of nesting of indirect files (default
is 3). This value must be referred to as a
byte. It can be patched or set by programs
to change the nesting depth of indirect

files.
400 Internal offset for use by BATCH only.
402 Byte offset to fork request processor from

start of resident monitor (contents of 54).

2.2.7 File Structure

RT-11 uses a contiguous file structure. This type of structure
requires that every file on a device be made up of a contiguous group
of physical blocks. Thus, a file that is 19 blocks long occupies 19
contiguous blocks on the device.

2-16

PROGRAMMED REQUESTS

A contiguous area on a device can be in one of the following
categories:

1. Permanent file. This is a file that has been created with
.ENTER and then .CLOSEd. Any named files that appear in a
directory listing are permanent files.

2. Tentative file. Any file that has been created with .ENTER
but not .CLOSEd is a tentative file entry. When the .CLOSE
request is given, the tentative entry becomes a permanent
file. If a permanent file already exists under the same
name, the old file is deleted when the tentative file is
.CLOSEAQd. If a .CLOSE is never given, the tentative file is
treated like an empty entry. The tentative file is deleted
when a new tentative file with the same name is created.

3. Empty entry. When disk space is unused or a permanent file
is deleted, an empty entry is created. Empty entries appear
in a full directory listing as <UNUSED> n, where n 1is the
decimal block length of the empty area.

Since a contiguous structure does not automatically consolidate unused
disk space, a device can eventually become fragmented with many
scattered empty entries. RT-11 has a SQUEEZE command to collect all
empty areas and create a single empty entry at the end of a device.

2.2.8 Completion Routines

Completion routines are user-written routines that are entered
following the completion of some external operation. A completion
routine can be entered after an I/0 data transfer, after some number
of clock ticks or after a user-specified interrupt. On entry to an
I/0 completion routine, RO contains the contents of the channel status
word for the operation and Rl contains the octal channel number of the
operation. The carry bit is not significant.

Completion routines are handled differently in the SJ and the FB or XM
versions of RT-11. 1In the SJ version, completion routines are totally
asynchronous and can interrupt one another. 1In FB and XM, completion
routines do not interrupt each other. Instead they are queued and
made to wait until the correct job is running. For example, if a
foreground job is running and an I/0 transfer initiated by a
background job completes with a specified completion routine, the
background routine is queued and does not execute until the foreground
gives up control of the system. If the foreground is running and a
foreground I/0 transfer completes and wants a completion routine, that
routine is entered immediately if the foreground 1is not already
executing a completion routine. If it is in a completion routine,
that routine continues to termination, at which point any other
completion routines are entered in a first in/first out order. 1If the
background is running and a foreground I1/0 transfer completes with a
specified completion routine, the background is suspended and the
foreground routine is entered immediately.

PROGRAMMED REQUESTS

The restrictions that must be observed when writing completion
routines are:

l. Completion functions cannot issue a request that would cause
the USR to be swapped in. They are primarily used for
issuing .READ and .WRITE requests, not for opening or closing
files, etc. A fatal monitor error is generated if the USR is
called from a completion routine.

2. Completion routines should never reside in the memory space
that is wused for the USR, since the USR can be interrupted
when I/0 terminates and the completion routine is entered.
If the USR has overlaid the routine, control passes to a
random place in the USR, with a HALT or error trap the likely
result.

3. The routine must be exited with an RTS PC (because it is
called from the monitor with a JSR PC,ADDR, where ADDR is the
user-supplied entry point address).

4. 1If a completion routine uses registers other than RO or R1,
it must save them upon entry and restore them before exiting.
Other requests cannot transfer data between the mainline
program and the completion routine.

5. In XM, completion routines must remain mapped while the
request is active and the routine can be called.

2.2.9 Using the System Macro Library

User programs for RT-11 should always be written using the macros
provided in the system macro library (SYSMAC.MAC), supplied with
RT-11. This ensures source level compatibility among all user
programs and allows easy modification by redefining a macro. A
listing of SYSMAC.MAC appears in Appendix B.

Suggestions for writing foreground programs are in Chapter 1 (FB
Programming and Device Handlers). Chapter 1 should be read in
conjunction with Chapter 2 before coding FB programs.

2.2.10 Error Reporting

In processing a programmed request, the monitor can detect an error
condition that must be reported to the user program. RT-11 programmed
requests use three methods of reporting these errors: the carry (C)
bit, the error byte (byte 52 in the system communication area), and
the monitor error message. The carry bit is returned clear after
normal termination of a programmed request, and set after an abnormal
termination. Almost all requests should be followed by a BCS or BCC
instruction to detect a possible error. When the carry bit is set,
the error byte wusually contains additional information about the
error. The meanings of values 1in the error byte are described
individually for each request. 1In most cases, the user program should
test the error byte when the carry bit is set. The values contained
in the error byte are not significant when the «carry bit is clear.
Certain serious or non-recoverable error conditions cause a monitor
error message to be printed at the console terminal. A user-program
can use the .SERR programmed request to cause these errors to be
reported through the carry bit and the error byte, in which case the
error byte will contain a negative error code.

PROGRAMMED REQUESTS

2.3 TYPES OF PROGRAMMED REQUESTS

There are three types of services that the monitor makes available to
the user through programmed requests. These are:

1. Requests for file manipulation
2. Requests for data transfer
3. Requests for miscellaneous services

Table 2-1 summarizes the programmed requests in each of these
categories alphabetically. Some requests function only in a FB and XM
environment and are ignored under the SJ monitor. The EMT and
function code for each request (where applicable) are shown in octal.
It should be noted as a general rule that only six characters (such as
.CHCOP) are significant to the MACRO assembler. Longer forms are
shown for readability only.

Table 2-1
Summary of Programmed Requests

Mnemonic EMT Code Purpose

File Manipulation Requests

.CHCOPY* 375 13 Establishes a link and allows one
job to access another job's channel.

.CLOSE 374 6 Closes the specified channel.

.DELETE 375 0 Deletes the file from the specified
device.

.ENTER 375 2 Creates a new file for output.

.LOOKUP 375 1 Opens an existing file for input
and/or output via the specified
channel.

. PURGE 374 3 Clears out a channel.

.RENAME 375 4 Changes the name of the indicated

file to a new name. If this request
is attempted with magtape, the
handler returns an illegal operation
code.

.REOPEN 375 6 Restores the parameters stored via a
.SAVESTATUS request and reopens the
channel for 1/0.

.SAVESTATUS (375 5 Saves the status parameters of an
open file 1in user memory and frees
the channel for future use.

(continued on next page)

PROGRAMMED REQUESTS

Table 2-1 (Cont.)
Summary of Programmed Requests

Mnemonic EMT Code Purpose
Data Transfer Requests

-MTIN* 375 37 Operates as a .TTYIN for
multi-terminal configuration.

.MTOUT* 375 37 Operates as a .TTYOUT for
multi-terminal configuration.

-MTPRNT* 375 37 Operates as a .PRINT request for a
multi-terminal configuration.

.PRINT 351 -- Outputs an ASCII string terminated
by a 0 byte or a 200 byte.

.RCVD* 375 26 Receives data. Allows a job to read

.RCVDW* messages or data sent by another job

.RCVDC* in an FB environment. The three
modes correspond to the READ,
.READC, and .READW modes.

.READ 375 10 Transfers data on the specified
channel to a memory buffer and
returns control to the user program
when the transfer request is entered
in the I/0 queue. No special action
is taken upon completion of I1/0.

.READC 375 10 Transfers data on the specified
channel to a memory buffer and
returns control to the user program
when the transfer request is entered
in the I1/0 queue. Upon completion
of the read, control transfers
asynchronously to the routine
specified in the .READC regquest.

. READW 375 10 Transfers data via the specified
channel to a memory buffer and
returns control to the user program
only after the transfer is complete.

.SDAT* 375 25 Allows the user to send messages or

. SDATC* data to the other job in an FB

. SDATW* environment. The three modes
correspond to the .WRITE, .WRITC, and
.WRITW modes.

.SPFUN 375 32 Performs special functions on magtape,
cassette, diskette and some disk
devices.

.TTYIN 340 -~ Transfers one character from the

.TTINR keyboard buffer to RO.

.TTYOUT 341 -- Transfers one character from RO to

.TTOUTR the terminal input buffer.

(continued on next page)

2-20 September 1978

PROGRAMMED REQUESTS

Table 2-1 (Cont.)
Summary of Programmed Requests

Mnemonic

EMT

Code

Purpose

.WRITE

+WRITC

<WRITW

375

375

375

11

11

11

Transfers data on the specified
channel to a device and returns
control to the user program when the
transfer request is entered in the I/0
queue. No special action is taken
upon completion of the I/0.

Transfers data on the specified
channel to a device and returns
control to the user program when the
transfer request is entered in the I/0
queue. Upon completion of the write,
control transfers asynchronously to
the routine specified in the .WRITC
request.

Transfers data on the specified
channel to a device and returns
control to the user program only after
the transfer is complete.

Miscellaneous Serv

ices

.CDFN

.CHAIN

.CRAW**
.CRRG**

.CMKT

.CNTXSwW*

.CSIGEN

375
374

375
375

375

375

344

.CSISPC

.CSTAT*

.DATE

.DEVICE*

.DSTATUS

345
375

374

375

342

15
10

36
36

23

33

27

12

14

Defines additional channels for I1/0.

Chains to another program (in the
background job only).

Creates a window in virtual memory.
Creates a region in extended memory.

Cancels an unexpired mark time
request.

Requests that the indicated memory
locations be part of the FB context
switch process.

Calls the Command String Interpreter
(CSI) in general mode.

Calls the CSI in special mode.

Returns the status of the channel
indicated.

Moves the current date information
into RO.

Allows the wuser to disable device
interrupts in FB upon program
termination.

Returns the status of a particular
device.

(continued on next page)

2-21 September 1978

PROGRAMMED REQUESTS

Table 2-1 (Cont.)
Summary of Programmed Requests

Mnemonic EMT Code Purpose

.ELAW** 375 36 Cancels an address window in virtual
memory.

.ELRG** 375 36 Cancels an allocated region in
extended memory.

LEXIT 350 -- Exits the user program.

.FETCH 343 -- Loads device handlers into memory.

.GMCX** 375 36 Returns mapping status of a specified
window.

.GTIM 375 21 Gets time of day.

.GTJB 375 20 Gets parameters of the current job.

.GTLIN 345 -- Accepts an input line from either an
indirect file or from the console
terminal.

.GVAL 375 34 Returns monitor fixed offsets in a
pseudo-protected manner.

.HERR 374 5 Specifies termination of the 3job on
fatal errors.

.HRESET 357 -- Terminates I/O transfers and does a
.SRESET operation.

.INTEN | === -- Notifies the monitor that an interrupt
has occurred, requests system state
and sets the processor priority to the
correct value.

.LOCK 346 -- Makes the monitor User Service
Routines (USR) permanently resident
until .EXIT or .UNLOCK 1is executed.
The wuser program is swapped out, if
necessary.

.MAP* 375 36 Maps a virtual address window to
extended memory.

L.MFPS | === -- Reads the priority bits in the
processor status word (but does not
read the condition codes).

«MRKT 375 22 Marks time; that is, sets an
asynchronous routine to occur after a
specified interval.

.MTATCH* 375 37 Attaches a terminal for exclusive use
by the requesting job.

(continued on next page)

2-22 September 1978

PROGRAMMED REQUESTS

Table 2-1

(Cont.)

Summary of Programmed Requests

Mnemonic EMT Code Purpose

.MTDTCH* 375 37 Detaches a terminal from one job and
frees it to be used by other jobs.

«MTGET* 375 37 Returns status of specified terminal
to caller.

.MTSET* 375 37 Determines and modifies terminal
status in a multi-terminal
configuration.

.MTPS | === -- Sets the priority bits, condition
codes, and T bit in the processor
status word.

.MTRCTO* 375 37 Resets the CTRL/O flag for the
designated terminal.

<MWAIT* 374 11 Waits for messages to be processed.

.PROTECT* 375 31 Requests that vectors in the area from
0-476 be given exclusively to the
current job.

.QSET 353 -- Increases the size of the monitor I1/0
queue.

.RCTRLO 355 -- Enables output to the terminal.

.RELEAS 343 -- Removes device handlers from memory.

. RSUM* 374 2 Causes the main line of the job to be
resumed when it was suspended with
.SPND.

.SCCA 375 35 Enables intercept of CTRL/C commands.

.SERR 374 4 Inhibits most fatal errors from
aborting the current job.

.SETTOP 354 -- Specifies the highest memory 1location
to be used by the user program.

.SFPA 375 30 Sets user interrupt for floating point
processor exceptions.

.SPND* 374 1 Causes the running job to be
suspended.

.SRESET 352 -- Resets all channels and releases the
device handlers from memory.

.SYNCH [=== -- Enables user program to perform
monitor programmed requests from
within an interrupt service routine.

(continued on next page)

2-23 September 1978

PROGRAMMED REQUESTS

Table 2-1 (Cont.)
Summary of Programmed Requests

Mnemonic EMT Code Purpose

. TLOCK* 374 7 Indicates if the USR 1is currently

being used by another job and performs
a .LOCK if the USR is available.

.TRPSET 375 3 Sets a user intercept for traps to
locations 4 and 10.

.TWAIT* 375 24 Suspends the running job for a
specified amount of time.

.UNLOCK 347 -- Releases the USR if a .LOCK was done
and swaps in the user program, if
required.

.UNMAP* 375 36 Unmaps a virtual memory address
window.

.UNPROTECT* {374 31 Cancels the .PROTECT vector protection
request.

..V, fe== —- Provides compatibility with version 1
format.

V2.0 e - Provides compatibility with version 2
format.

.WAIT 374 0 Waits for completion of all I/O on a

specified channel.

*FB and XM monitors

**XM monitor only

Requests requiring the USR (as explained in Section 2.2.5) differ
between the SJ and FB monitors. Table 2-2 indicates which requests
require the USR to be in memory. The .CLOSE reguest on
non-file-structured devices (LP:, PC:, TT:, etc.) does not require the
USR under any monitor.

The USR is not reentrant and cannot be shared by concurrent jobs.
When the USR is in use by one job, another job requiring it must queue
up for it. This is particularly important for concurrent jobs when
devices such as magnetic tape or cassette are active.

For example, USR file operations on tape devices require a linear
search of the tape. When a background job is running the USR, the
foreground job is locked out until the tape operation is completed.
Since that can take considerable time, the programmer should be aware
of the problem. In the FB and XM monitors, the .TLOCK request (see

Section 2.4.56) can be used by a foreground job to check USR
availability.

2-24 September 1978

PROGRAMMED REQUESTS

Table 2-2
Requests Requiring the USR

Request SJ FB XM
.CDFN Yes* No No
.CHAIN No No No
.CHCOPY - No No
.CLOSE (see Note 1) Yes Yes Yes
.CMKT No No No
.CNTXSW - No No
.CRAW - - No
.CRRG - -— No
.CSIGEN Yes Yes Yes
.CSISPC Yes Yes Yes
.CSTAT - No No
.DATE No No No
.DELETE Yes Yes Yes
.DEVICE - No No
.DSTATUS Yes Yes Yes
.ELAW - - No
.ELRG - - No
. ENTER Yes Yes Yes
.EXIT Yes Yes Yes
.FETCH Yes Yes Yes
.GMCX - - No
.GTIM No No No
.GTJB -- No No
.GTLIN Yes* Yes Yes
.GVAL No No No
-HERR No No No
.HRESET Yes* No No
. INTEN No No No
.LOCK (see Note 2) Yes Yes Yes
. LOOKUP Yes Yes Yes
.MAP - - No
-MFPS No No No
«MRKT No No No
.MTATCH - No No
.MTDTCH - No No
.MTGET -— No No
+MTIN - No No
.MTOUT - No No
«MTPRNT - No No
.MTPS No No No
«MTRCTO - No No
«MTSET - No No
«MWAIT - No No
. PRINT No No No

* Those requests marked with an as
copy of the USR to be read in bef

executing such a request,
device even if there is a

Note 1:
Note 2:

Note 3:

terisk always require

ore they can be executed.
the USR must be read in from the
copy of the USR presently in memory.

Only if channel was opened with .ENTER.

Only if USR is in a swapping state.

Only 1f USR is not in use by the other job.

a

fresh
When
system

(continued on next page)

PROGRAMMED REQUESTS

Table 2-2 (Cont.)
Requests Requiring the USF

Request SJ FB XM
. PROTECT - No No
. PURGE No No No
.QSET Yes* Yes* Yes*
.RCTRLO No No No
.RCVD/.RCVDC/.RCVDW - No No
.READ/.READC/.READW No No No
.RELEAS Yes Yes Yes
. RENAME Yes Yes Yes
. REOPEN No No No
.RSUM/.SPND - No No
.SAVESTATUS No No No
.SCCA No No No
.SDAT/.SDATC/ .SDATW - No No
.SERR No No No
.SETTOP No No No
.SFPA No No No
.SPFUN No No No
.SRESET Yes* No No
.SYNCH No No No
.TLOCK (see Note 3) Yes Yes Yes
.TRPSET No No No
.TTINR/.TTYIN No No No
.TTOUTR/.TTYOUT No No No
. TWAIT - No No
. UNLOCK No No No
. UNMAP - -- No
. UNPROTECT -- No No
.WAIT No No No
.WRITE/.WRITC/ .WRITW No No No

* Those requests marked with an asterisk always require a
the USR to be read in before they can be executed.
executing such a request, the USR must be read in from the

device even if there is a copy of the USR presently in memory.

copy of

Note 1:
Note 2:

Note 3:

Only if channel was opened with .ENTER.

Only if USR is in a swapping state.

Only if USR is not in use by the other job.

2.3.1 System Macros

The following macros are included in the system macro library,
not programmed requests
instruction:

..V2,
..V1.

.

because they do not

generate

They can be used in the same manner as the other macro calls;
explanations follow.

2-26

fresh
When
system

but are

an

EMT

their

PROGRAMMED REQUESTS

Vi..z..v2..

2.3.1.1 ..vl../..v2..

Any version 1 and/or version 2 program that uses system macros must
specify the version format in which the macro calls are to be
expanded. Assembly errors at macro calls result if the proper version
designation is not made. In version 3B, ..Vl.. and ..v2.. are
unnecessary since the expansions are made automatically. The ..V1..
and ..v2.. macros are retained only for compatibility with earlier
systems.

The ..Vl.. macro call enables all macro expansions to occur in
Version 1 format.

Macro Call: .MCALL ..Vl1..
..V1..

This causes all macros in the program to be assembled in version 1
form and the symbol ...Vl to be set equal to 1. User programs should
not use the ...Vl symbol.

To cause all macro expansions to occur in version 2 format, the ..v2..
macro call is used.

Macro Call: .MCALL ..Vv2,.
..V2..

The ..V2.. macro causes the ...Vl symbol to equal 2. As with the V1
case, user programs should not use the ...V2 symbol.

Run-time or assembly errors can occur if both the ..vl.. and ..v2..
macro calls are used in a program.

All examples in this chapter illustrate the format for version 3 and
later systems.

NOTE

It is possible for user programs to
exist in which version 1 and version 2
or 3 macros are present. This is
allowable by invoking the ..Vl.. macro
and using those macros that have no
version 1 counterpart as if the ..V1..
macro had not been used.

This causes all macros that existed in
version 1 to assemble in version 1
format, -while those macros new to
version 2 or version 3 are correctly
generated as version 2 or version 3
macros. Note that in this case a macro
that existed in version 1 (such as
-READ) will expand in the version 1
format.

2-27 September 1978

PROGRAMMED REQUESTS

2.4 PROGRAMMED REQUEST USAGE

This section

describes

presents the programmed requests alphabetically and
one in detail. The following parameters are commonly

used as arguments in the various calls:

addr

area

blk

buf

cblk

chan

chrcnt

code

crtn

dblk

func

num

segnum

an address, the meaning of which depends on the
request being used.

a pointer to the EMT argument 1list (for those

requests that require a 1list) -- see Section
2.2.3.

a block number specifying the relative block in a
file where an I/0 transfer is to begin.

a buffer address specifying a memory location into
which or from which an 1I/0 transfer is to be
performed; this address has to be word-aligned,
i.e., an even address and not a byte or odd
address.

the address of the five-word block where channel
status information is stored.

a channel number in the range 0-377(octal).

a character count in the range 1-255 (decimal).

a flag used to indicate whether the <code in an
area form (EMT 375) of a programmed request is to

be set.

the entry point of a completion routine -~- see
Section 2.2.8.

the address of a four-word Radix-50 descriptor of
the file to be operated upon -- see Section 2.2.2.

a numerical code indicating the function to be
performed.

a number, the value of which depends on the
request.

file number -- for cassette operations if this
argument is blank, a value of 0 is assumed.

For magtape operation, it describes a file
sequence number that can have the following
values:

Value Meaning

0 For .LOOKUP, this value rewinds
the magtape and spaces forward
until the file name 1is found.
For .ENTER it rewinds the
magtape and spaces forward
until the file name is found or
until the logical end of tape
is detected. 1If the file name
is found, an error return is
taken.

2-28 September 1978

PROGRAMMED REQUESTS

n Wwhere n is any positive number .
This value positions the
magtape at file sequence number
n. 1f the file represented by
the FSN is greater than two
files away from the beginning
of tape, a rewind is performed.
If not, the tape is backspaced
to the beginning of the file.

value Meaning
-1 For .LOOKUP or .ENTER, this

value suppresses rewinding and
gearches for a file name from
the current tape position.
Note that if the position is
unknown, the handler executes a
positioning algorithm that
involves packspacing until an
EOF label is found. The user
should not use any other value
since all other negative values
are reserved for future use.

-2 For .ENTER, the tape is rewound
and spaces forward until the
file is found or end of tape is
detected. The file 1is then
entered causing a new end of
tape when the file is closed.

unit the logical unit number of a particular terminal
in a multi-terminal system.
wcnt a word count specifying the number of words to be
transferred to or from the buffer during an I1/0
operation.

The RT-11 MACRO assenbler supports keyword macro arguments. all of
the arguments described above can be encoded using their keyword form
(see the PDP-11 MACRO-11 Language Reference Manual for details).

A new argument code is included for all EMT 375 area versions of the
macros. 1t is used for explicit control in expanding an EMT
programmed request. In the 375 EMTs, the high byte of the area
(pointed to by RO) contains an identifying code for the reguest.
Normally, this byte is set if the macro invocation of the programmed
request specifies the area argument, and remains unaffected if the
programmed request omits the area argument. If the macro invocation
contains CODE=SET, the high byte of the first word of the area is
always be set to the appropriate code. This is true whether or not
area is specified.

1f CODE=NOSET is in the macro invocation, the high byte of the first
word of area remains unaffected. This is true whether or not area is
specified. The latter case can be used to avoid setting the code when
the programmed request is being set up. This might be done because it
is known to be set correctly from an earlier invocation of the request

using the same area, or because the code was statically set during the
assembly process.

Additional information concerning these parameters (and others not
defined here) is provided as necessary under each request.

2-29

PROGRAMMED REQUESTS

.CDFN

2.4.1 .CDFN

The .CDFN request redefines the number of 1,0 channels (see Section
2.2.1). Each job, whether foreground or background, is initially
provided with 16 (decimal) 1,0 channels, numbered 0-15. .CDFN allows
the number to be expanded to as many as 255 (decimal) channels

The space used to contain the new channels is taken from within the
user program. Each I/0 channel requires five words of memory.
Therefore, the user must allocate 5*n words of memory, where n is the
number of channels to be defined.

It is recommended that the .CDFN request be used at the beginning of a
program, before any I/0 operations have been initiated. 1f more than
one .CDFN request is used, the channel areas must either start at the
same location or not overlap at all. The two requests .SRESET and
-HRESET cause the user's channels to revert to the original 16
channels‘ defined at program initiation. Hence, any .CDFNs must be
reissued. after using .SRESET or .HRESET

Note that .CDFN defines new channels; the space for the previously
defined channels cannot be used. Thus, a .CDFN for 20 (decimal)
channels (while 16 original channels are defined) creates 20 new 1I/,0
channels; the space for the original 16 is unused, but the contents
of the old channel set are copied to the new channel set.

Note that if a pProgram is overlaid, channel 15 (decimal) is used by the
overlay handler and should not be modified. (Other channels can be
defined and used as usual.)

Macro Call: .CDFN area,addr,num

where: area is the address of a three-word EMT argument
block
addr is the address where the 1,0 channels begin
num is the number of I/0 channels to be created

Request Format:

RO -+ area: 15 0
addr
num
Errors:
Code Explanation
0 An attempt was made to define fewer channels than

already exist.

2-30

PROGRAMMED REQUESTS

Example:

+TITLE COPN,MAC
JTHIS pXAMDLE DEFINES 40 (DECIMAL) CMANNELS TO STARY
JAT LOCATION CWANL, AN ERROR OCCURS IF 40 OR MORE CHANNELS
JARE aLREADY DEFINED,
JMCALL JCOFN, ,PRINT, EX]T
START; LCOFN SROLISTIECHANLr wa¥,

8CS BADCOF
«PRINT 8MSGH
JEXIT
RADCDF, ,PRINY sM8G2
JEXTTY
“8G1e «ASCIZ /.COFPN O, K./
«EVEN
M8G2y ,ASCIZ /8aD ,COFN/
+EVEN
ROLIST, ,BLxw 3 JEMT ARGUMENT L IS8T
CHANLY JBLKW 40,8 JROOM FOR CHANNELS

+END STARY

.CHAIN

2.4.2 .CHAIN

This request allows a background program to pass control directly to
another background program without operator intervention. Since this
process can be repeated, a large "chain" of programs can be strung
together.

The area from locations 500-507 contains the device name and file name
(in Radix-50) to be chained to. The area from locations 510-777 is
used to pass information between the chained programs.

Macro Call: .CHAIN

Request Format:

Ro= [0 o]

1. No assumptions should be made concerning which areas of
memory remain intact across a .CHAIN. 1In general, only the
resident monitor and locations 500-777 are preserved across a
.CHAIN.

2. I/0 channels are left open across a .CHAIN for use by the new
program. However, new I/0 channels opened with a .CDFN
request are not available in this way. Since the monitor
reverts to the original 16 channels during a .CHAIN, programs
that leave files open across a .CHAIN should not use .CDFN.
Furthermore, non-resident device handlers are released during
a .CHAIN, and must be .FETCHed again by the new program.

PROGRAMMED REQUESTS

3. An executing program can determine whether it was CHAINed to
or RUN from the keyboard by examining bit 8 of the JSW. The
monitor sets this bit if the program was invoked with .CHAIN.
If the program was invoked with R or RUN command, this bit
remains cleared. If bit 8 1is set, the information in
locations 500-777 1is preserved from the program that issued
the .CHAIN, and is available for the currently executing
program to use.

An example of a calling and a called program is MACRO and
CREF. MACRO places important information in the chain area,
locations 500-777, then chains to CREF. CREF tests bit 8 of
the JSW. If it is clear, it means that CREF was invoked with
the R or RUN command and the chain area does not contain
useful information. CREF aborts itself immediately. If bit
8 is set, it means that CREF was invoked with .CHAIN and the
chain area contains information placed there by MACRO. 1In
this case, CREF executes properly.

Errors:

.CHAIN is implemented by simulating the monitor RUN command and
can produce any errors that RUN can produce. If an error occurs,
the .CHAIN is abandoned and the keyboard monitor is entered.

When using .CHAIN, care should be taken for initial stack
placement, since the program being chained to is started. The
linker normally defaults the initial stack to 1000 (octal); if
caution is not observed, the stack can destroy chain data before
it can be used.

Example:

oTITLE ChHAIN,MAC
JTHIS EXAMPLE CnhAINS TO THE PROGKAM CALLED MYPROG,SAV
JAND PASSES A TYPED LINE TO THE FROGRAM,

o¥CALL (CHAIN, TTYIN

START: MOV, BSCIRY $SET UP TO CHAIN
MOV #CHPTR,R2 JOEVICE, FILE NAME TO S@@=Sy}
JKEPT 4
MOV (R2)+,(R1)*
JENDK

LooP; «TTYIN JNOm GET A COMMAND LINE
MOVB RZsI(RL)¢ JAND PASS IT TO THE JOB
CHPB Ra,#®}e $IN LOCATIONS S12 AND UP
BME LooP sLOOP UMTIL LINE FEED
CLRB (R1)¢ JPUT IN A NuULL BYTE
oCHAIN

CHPTRE HADSS /DK /
«¥AOSY /MYPROG/
oRADSY® /SAvV/
«END START

PROGRAMMED REQUESTS

.CHCOPY

2.4.3 .CHCOPY (FB and XM Only)

The .CHCOPY request opens a channel for input, logically connecting it
to a file that is currently open by the other job for either input or
output. This request can be used by either the foreground or the
background. .CHCOPY must be issued before the first .READ or .WRITE.

.CHCOPY is legal only on files on disk (including diskette) or
DECtape; however, no errors are detected by the system if another
device is used. (To close a channel following use of .CHCOPY, use
either the .CLOSE or .PURGE request.)

Macro Call: .CHCOPY area,chan,ochan

where: area is the address of a two-word EMT argument
block
chan is the channel the current job will use to

read the data

ochan is the channel number of the other job's
channel to be copied

Request Format:

RO -+ area: 13 [chan
ochan

Notes:

1. If the other job's channel was opened with .ENTER in order to
create a file, the copier's channel indicates a file that
extends to the highest block that the creator of the file had
written at the time the .CHCOPY was executed.

2. A channel open on a non-file-structured device should not be
copied, because intermixture of buffer requests can result.

3. A program can write to a file (that is being created by the
other job) on a copied channel just as it could if it were
the creator. When the copier's channel is closed, however,
no directory update takes place.

Errors:
Code Explanation
0 Other job does not exist, does not have
enough channels defined, or does not have the
specified channel (ochan) open.

1 Channel (chan) already open.

PROGRAMMED REQUESTS

Example:

«TITLE CHCOPF,MAC
ITHIS 18 TWE FOREGAOUND PROGRAM TO BE RUN IN
TCONJUNCTION WITH CHCOPY,MAC FOR THME EXECUTION OF
JTHE CHCPPY EXAMPLE,

SMCALL oLOOKUP, s PRINT, ,SDATW, sEXIT, sRCVOW

STarT; wov SAREA,RS
«LOOKUP RS 8i,8FILE
8Cs LKERR
«S0ATW RS,sAUFR, 82 JPASS BLOCK & AND CHANNELS
170 BACXGROUND JOB
L]14 } NJERR INOT THERE
+RCVOm RS,8BUF2,82 IWAIT FOR RETURN MESSAGE
JEXIT
NJERRy MOV SNJMSG,R0O
PuSGy JPRINY
0K 1 JEXIT
LKERRy MOV SLKMSGIRO
s8R pPMSG
FILEs LR4DS2 /DK TEST TMP/
AREA} oBLUW [
AUFR, +WORD [} 18LOCK &
«WORD 1 JCHANNEL »

sufa: LKW 3
LxkM8Gy LASCIZ /LOOKUP ERROR/
NJM8Gy LASCIZ /NO BACKGROUND 308/
+EVEN
<END 8TARTY

LTITLE CcweOPY, MaC
JIN THYI8 EXAMPLE, ,CHCOPY I8 USED TO READ DATA CURRENTLY
JBEING WRITTEN BY THE OTHER JOB. THE CORRECT BLOCK
INUMBER AND CHANNEL TO READ I8 OBTAINED BY 4 «RCYDW COMMAND.
ITHE CWMANNEL NUMBER WILL BE IN M8Gede THE CHCOPK' MAC PROGRAM
IMUST 8E EXECUTED IN TWE FOREGROUND,
JMCALL L CHCOPY, ,RCVOW, PURGE, ,READW, EXIT, PRINT
ST +PURGE w0 IMAKE SURE wE WAVE CLEAR
JCHANNEL
JRCVOW ®AREA,¥MSG,%2 JREAD TwO wQORDS, BLOCK ®
JAND CHANNEL

.14] NOJOS8 INO JOB THERE
«CHCOPY SAREA,#3,)M8G*4 jCHANNEL # I8 IN THERE
8Cs BUSY JsuT BUSY
oREADW WAREA,#0,8BUFF,8256¢,48Ge2 jGET TWE CORRECT BLOCK
8Cs RDERR
+PRINT #0KMSG
JEXIT
NOJOBy PRINT wMSGH
JEXIT
BUSY oPRINT aM8G2
JLEXIT
ROERRy ,PRINT #MSG)
JEXIT

AREA} oBLXW 8
LE] oBLKW -]
BUFF, oBLAN 296,
MSG1,y «ASCIZ /NO JOBY/
MsGat +ASCIZ /BUSY Y/
“3Gy, «ASCIZ /READ ERROR/
OKMSGy LASCIZ /READ OK/
+EVEN

oEXIT

«END 87

PROGRAMMED REQUESTS

.CLOSE

2.4.4 .CLOSE

The .CLOSE request terminates activity on the specified channel and
frees it for use in another operation. The handler for the associated
device must be in memory.

Macro Call: .CLOS&Z chan

Request Format:

RO = (6] chan |
A .CLOSE request specifying a channel that is not opened is ignored.

A file opened with .LOOKUP does not require any directory operations
when a .CLOSE is issued and the USR does not have to be in memory for
the .CLOSE.

A .CLOSE 1is required on any channel opened for output if the
associated file is to become permanent.

A .CLOSE performed on a file opened with .ENTER causes the device
directory to be wupdated to make that file permanent. If the device
associated with the specified channel already contains a file with the
same name and file type, the 0ld copy is deleted when the new file is
made permanent. When an .ENTERed file 1is .CLOSEd, its permanent
length reflects the highest block written since it was entered. For
example, if the highest block written is block number 0, the file |is
given a length of 1; if the file was never written, it is given a
length of 0. If this length is less than the size of the area
allocated at .ENTER time, the unused blocks are reclaimed as an empty
area on the device. 1In magtape operations, the .CLOSE request causes
the handler to write an ANSI EOF1 label in software mode (using MM.SYS
or MT.SYS) and to close the channel in hardware mode (using MMHD.SYS
or MTHD.SYS).

Errors:

.CLOSE does not return any errors (unless the .SERR system
service has been issued). If the device handler for the
operation is not in memory, and the .CLOSE request requires
updating of the device directory, a fatal monitor error is
generated.

Example:

The examples for the .CSISPC and .WRITW requests show typical
uses for .CLOSE.

PROGRAMMED REQUESTS

.CMKT

2.4.5 LCMKT (FB and XM Only; SJ Monitor SYSGEN Option)

The .CMKT request causes one or more outstanding mark time requests to
be cancelled (mark time requests are discussed in Section 2