IDENTIFICATION

Product Code: DEC-08-LBAA-D
Product Name: Binary Loader
Date Created: May 10, 1967
Maintainer: Software Services Group
1. **ABSTRACT**

The Binary Loader is a short routine for reading and storing information contained in binary-coded tapes, using the ASR 33 Perforated-Tape Reader or the Type 750 High-Speed Perforated Tape Reader.

The Binary Loader accepts tapes prepared by the use of PAL (Program Assembly Language) or MACRO-8. Diagnostic messages may be included on tapes produced when using either PAL or MACRO. The Binary Loader will ignore all diagnostic messages.

2. **PRELIMINARY REQUIREMENTS**

Storage

This program occupies 94 (decimal) core locations.

Equipment

The Binary Loader may be used with a system consisting of the PDP-8 and associated Teletype ASR 33 only. On the other hand, the same program operates with systems including the 750 High-Speed Tape Reader and/or the Memory Extension Control Type 183. This loader is compatible with the 552 DECTape Library System and the TC01 DECTape Library System.

3. **LOADING OR CALLING PROCEDURE**

The Binary Loader is brought into memory by the RIM or Read-In-Mode Loader. This requires that the Binary Loader tape itself be in RIM format. See Read-In-Mode Loader Manual for a thorough discussion of the RIM Loader and RIM format.

NOTE: 183 Memory Extension users; refer to Special Requirements section.

Proceed as follows:

a. Place the Binary Loader tape in the ASR 33 reader.
b. Make sure that the ASR 33 is on-line.
c. Place the starting address of the RIM Loader (7756) in the SWITCH REGISTER.
d. Press the LOAD ADDRESS key.
e. Press the START key.
f. Move the READER CONTROL switch to the START position.

Switch Setting

NOTE: 183 Memory Extension users see "Special Requirements" section.
4. **USING THE PROGRAM OR ROUTINE**

 a. Place the tape to be loaded (which must be in binary format) in either the ASR 33 Tape Reader or the Type 750 High-Speed Reader. When using the ASR 33, make sure the reader is on-line. When using the 750, make sure the reader is on.

 b. Place the starting address of the Binary Loader (7777) in the SWITCH REGISTER.

 c. Press LOAD ADDRESS key.

 When using the 750, change the SWITCH REGISTER to 3777 (bit 0 = 0). Omit this step if using the ASR 33.

 d. Press console START key.

 When using the ASR 33, move the READER CONTROL switch to START.

 Errors

 When PAL is used to produce a binary tape, a checksum is automatically placed at the end of the binary tape. The checksum is the sum of all data on the tape including the origin word.

 To be more specific, it is the sum of all data contained on tape that will enter the accumulator (AC) in bit positions 4 through 11 from, for example, the ASR 33 Reader buffer. Note that the sum is accumulated character by character and not word by word. Overflow (a carry out of the most-significant bit position of the AC) is ignored both when calculating a checksum (which is done by PAL) and when the Binary Loader accumulates a checksum while loading a tape.

 If the checksum accumulated while using the Binary Loader does not agree with the last two characters on the tape (i.e., the checksum on the tape calculated and placed there by PAL), an error has occurred.

 When the computer halts, the display lights will be static, the memory buffer (MB) will contain 7402, and the contents of the AC will be unequal to zero if a checksum error has occurred.

 Restart the computer after the tape has been repositioned by pressing the CONTINUE key.

5. **DETAILS OF OPERATION AND STORAGE**

 This program furnishes the basic means by which the contents of binary-coded tapes are loaded into core.

 The heart of the program is a short subroutine (tagged BEGG) which operates in outline as follows:

 The incoming character is tested to see if it is a "rubout" (all eight tape channels punched). If this is the case, all subsequent information coming from the reader is ignored until another rubout is detected.
This is the mechanism by which PAL diagnostic messages are detected. They are preceded and followed by a single rubout character. Within a diagnostic message, in contrast to the rules concerning the balance of the binary tape, any character is valid except, of course, a single rubout character itself which would prematurely conclude the diagnostic message. Note that two consecutive rubouts within a diagnostic message would, in effect, be ignored.

Next the character is tested to see if it is leader or field settings.

These tests are listed in the order in which they are performed. If none of the actions indicated have occurred upon exit from the BEGG subroutine, the character is part of the origin address, contains part of a data word, or is a part of the checksum, and the appropriate course is followed by the main routine.

6. **SPECIAL REQUIREMENTS OR FORMATS**

6.1 **Format**

6.1.1 **External Format** - Tapes to be read by this program must be in binary-coded format.

Leader of about 1 foot of leader-trailer codes (any code with channel 8 punched; preferably code 200).

Two characters representing the address (origin) into which the first command on the next portion of the tape will be placed. Successive commands are placed in memory at addresses:

origin+1, origin+2,origin+n.

The initial character of the origin has no punch in channel 8, while channel 7 is punched.

The second character designating the origin has no punches in either channel 8 or 7.

A concluding 2-character group representing the checksum with no punches present in channels 8 or 7.

Trailer similar to leader.

Reference to Program Listing, will indicate that after the BEGG subroutine tests to see if the character just read was leader/trailer, a test is made to determine whether the character is a "field setting." This is a reference to the fact that PAL produces tapes on which characters of the form

11 XXX 000

indicate the memory field into which the following data is to be loaded. If for example XXX were 101, all data following the field designator should be loaded into memory field five.
6.1.2 Example of Binary Loader Format

<table>
<thead>
<tr>
<th>Tape Channel</th>
<th>Channels 8 and 7 Indicate</th>
<th>Program Proper</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>87 654 S 321</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 000 . 000</td>
<td>Leader</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>01 000 . 010</td>
<td>Origin</td>
<td>No</td>
<td>In octal the origin 0200. Loading will start at 0200.</td>
</tr>
<tr>
<td>00 000 . 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 111 . 010</td>
<td>Contents of 200</td>
<td>Yes</td>
<td>The command 7200 or CLA.</td>
</tr>
<tr>
<td>00 000 . 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 011 . 010</td>
<td>Contents of 201</td>
<td>Yes</td>
<td>The command 3276 or DCA Z 076.</td>
</tr>
<tr>
<td>00 111 . 110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 111 . 100</td>
<td>Contents of 202</td>
<td>Yes</td>
<td>The command 7402 or HLT.</td>
</tr>
<tr>
<td>00 000 . 010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 000 . 100</td>
<td>Checksum</td>
<td>No</td>
<td>The program determines that these two characters are the checksum since trailer follows.</td>
</tr>
<tr>
<td>00 010 . 010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 000 . 000</td>
<td>Trailer</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

The octal checksum in this example is 0422. Note that this is the following sum:

```
102  Origin
000
072  First word
000
032  Second word
076
074  Third word
002
422
```

6.2 Memory Extension Usage

6.2.1 Loading

It is recommended that the Binary Loader exist in field 0. This will insure a permanent program lining around location 7754 and 7755 which are used for TCO1 DECtape. The loader will of course exist in any field, though caution must be taken not to use location 7754 and 7755 in field 0. This applies only to DECtape users. Also, when the proper field is chosen it should be noted that the RIM Loader must already be in that field.
Binary Loader Loading Procedure For Extended Memory Users

a. Place the Binary Loader tape in the reader.
b. Place the proper FIELD in the INSTRUCTION FIELD REGISTER when putting the starting address of the RIM Loader (7756) in the SWITCH REGISTER.
c. Press the LOAD ADDRESS key.
d. Press the START key.
e. Start the reader. (ASR 33 – press READER CONTROL to start, 750 High-Speed Reader – should already be ready to start).

Operation and Usage For Extended Memory Users

a. Place the tape to be loaded (tape must be in binary format) in the reader.
 When using the ASR 33, make sure reader is on-line. When using the 750, make sure reader is on and tape is positioned with leader/trailer over read head.
b. In the DATA FIELD REGISTER place the field in which the program is to be loaded.
 In the INSTRUCTION FIELD REGISTER place the field that the binary loader is in.
 Place starting address of the Binary Loader (7777) in the SWITCH REGISTER.
c. Press LOAD ADDRESS key.
 When using the 750, change the SWITCH REGISTER to 3777 (bit 0 = 0). Omit this step if using the ASR 33.
d. Press console START key.

6.2.2 Errors – See Program Usage Section (Errors)

6.2.3 Starting of Program – After program has been successfully loaded, place starting address of program in SWITCH REGISTER. Place the field where program exists in the FIELD INSTRUCTION REGISTER.

Press LOAD ADDRESS key.
Press console START key.

7. REFERENCED MANUALS

<table>
<thead>
<tr>
<th>Old Number</th>
<th>New Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIM Loader</td>
<td>Digital-8-1-U</td>
</tr>
<tr>
<td>PAL III</td>
<td>Digital-8-3-S</td>
</tr>
<tr>
<td>MACRO-8</td>
<td>Digital-8-8-S</td>
</tr>
</tbody>
</table>
8. **FLOW CHARTS**

Loading Binary (BIN) Loader

DEC Library Tape No: Digital-8-2-U

- **CHECK THE RIM LOADER IN MEMORY, IF NECESSARY**

- **PUT SWITCH ON ASR-33 READER TO FREE**
 - **BE SURE ASR-33 SWITCH IS ON LINE**

- **PUT THE BINARY LOADER TAPE INTO READER WITH LEADER CODE OVER THE READER HEAD; NOT BLANK TAPE**

- **PUSH ASR-33 SWITCH TO START**

- **ASR-33 SWITCH IS ON LOCAL SWITCH TO LINE**

- **PUT STARTING ADDRESS, 7756, INTO THE 30**
 - **PRESS LOAD ADD KEY**

- **PRESS START KEY**

- **PUT DOWN, PRESS CONT.**

- **DOES TAPE START AND CONTINUE MOVING IN READER?**
 - **NO**
 - **ARE BOTH THE SING INSTR AND SING STEP SWITCHES OFF?**
 - **YES**
 - **NO**

- **YES**

- **DOES TELEPRINT START PRINTING?**
 - **NO**
 - **YES**

- **AFTER PROGRAM HEADS IN, WAIT UNTIL ONLY BIT "O" IS ON IN ACCUMULATOR (i.e., TRAILER CODE OVER READER HEAD)**

- **PRESS STOP KEY ON CONSOLE, MOVE ASR-33 READER SWITCH TO FREE PROGRAM IS LOADED**

" THIS ALLOWS THE TAPE TO FIT SMOOTHLY OVER THE READER HEAD AND THE SPROCKET WHEEL TO RUN FREELY.

EXTENDED MEMORY USERS

- **(1) CHECK FOR RIM LOADER IN PROPER FIELD**
- **(2) PUT FIELD IN INSTRUCTION FIELD REGISTER**
Using Binary Loader

Flowchart Description:

1. **Put 5a of bin loader 7777 into switch register.**
2. **Press load add key.**
3. **High speed photo electric:**
 - **Yes:**
 - **Put down bit 0 in switch register.**
 - **Put program tape into reader with feed-hole nearer face of reader.**
 - **Leader code over photo-diodes.**
 - **Turn reader on.**
 - **No:**
 - **Low speed ASR-33:**
 - **Put program tape into reader with leader code over the readerhead.**
 - **ASR-33 reader switch on free.**
 - **Turn ASR-33 to line push ASR-33 reader to start.**
4. **Extended Memory Users:**
 - **Put proper field where binary loader is located in instruction field register.**
 - **Put proper field where program is desired in data field register.**
5. **Press start on console wait until tape stops after reading in.**
6. **Is accumulator 0000?**
 - **No:** **Program loaded incorrectly.**
 - **Yes:** **Program is loaded correctly.**

Notes:

1. Put proper field where binary loader is located in instruction field register.
2. Put proper field where program is desired in data field register.
9. **LISTING**

/BINARY AND DECTAPE LOADERS FOR
/555 CONTROL

*7612

7612	0000	SWITCH,	0
7613	0000	MEMTEM,	0
7614	0000	CHAR,	0
7615	0000	CHKSUM,	0
7616	0000	ORIGIN,	0

*7626

/EXTRACT ERRORS, FIELD, L/T

7626	0000	BEGG,	0	
7627	3212	DCA SWITCH	/SET SWITCH	
7630	4260	JMS READ	/GET A CHARACTER	
7631	1300	TAD M376	/TEST FOR 377	
7632	7750	SPA SNA CLA		
7633	5237	JMP .+4	/NO	
7634	2212	ISZ SWITCH	/YES: COMPLEMENT SWITCH	
7635	7040	CMA		
7636	5227	JMP BEGG+1		
7637	1212	TAD SWITCH	/NOT 377	
7640	7640	SZA CLA	/IS SWITCH SET?	
7641	5230	JMP BEGG+2	/YES; IGNORE	
7642	1214	TAD CHAR	/NO; TEST FOR CODE	
7643	0274	AND MASK	/TYPES	
7644	1341	TAD M200		
7645	7510	SPA		
7646	2226	ISZ BEGG	/DATA OR ORIGIN	
7647	7750	SPA SNA CLA		
7650	5626	JMP I BEGG	/DATA, ORIGIN, or L/T	
7651	1214	TAD CHAR	/FIELD SETTING	
7652	0256	AND FMASK		
7653	1257	TAD CHANGE		
7654	3213	DCA MEMTEM		
7655	5230	JMP BEGG+2	/CONTINUE INPUT	
7656	0070	FMASK,	70	
7657	6201	CHANGE,	CDF	
7660	0000	READ,	0	
7661	0000			
7662	6031	LOR,	KSF	/WAIT FOR FLAG
7663	5262	JMP .-1		
7664	6036	KR		
7665	3214	DCA CHAR		
7666	1214	TAD CHAR		
7667	5660	JMP I READ		
7670	6011	HIR,	RSF	
7671	5270	JMP .-1		
7672	6016	RRB RFC		
7673 5265 JMP LOR + 3
7674 0300 MASK, 300
 /TRAILER CODE SEEN
7675 4343 BEND, JMS ASSEMB
7676 7041 CIA
7677 1215 TAD CHKSUM
7700 7402 M376, HLT
7701 6032 BEGIN, KCC
7702 6014 RFC
7703 6214 RDF
7704 1257 TAD CHANGE
7705 3213 DCA MEMTEM /SAVE FIELD INSTRUCTION
7706 7604 CLA OSR
7707 7700 SMA CLA
7710 1353 TAD HIRI
7711 1352 TAD LORI
7712 3261 DCA READ + 1
7713 4226 JMS BEGG
7714 5313 JMP .-1 /IGNORE LEADER
7715 3215 GO, DCA CHKSUM
7716 1213 TAD MEMTEM
7717 3336 DCA MEMFLD
7720 1214 TAD CHAR
7721 3376 DCA WORD1
7722 4260 JMS READ
7723 3355 DCA WORD2
7724 4226 JMS BEGG /LOOK AHEAD
7725 5275 JMP BEND /TRAILER, END
7726 4343 JMS ASSEMB
7727 7420 SNL
7730 5336 JMP MEMFLD
7731 3216 DCA ORIGIN
7732 1376 CHEX, TAD WORD1
7733 1355 TAD WORD2
7734 1215 TAD CHKSUM
7735 5315 JMP GO
7736 0000 MEMFLD, 0
7737 3616 DCA I ORIGIN
7740 2216 ISZ ORIGIN
7741 7600 M200, 7600
7742 5332 JMP CHEX
7743 0000 ASSEMB, 0
7744 1376 TAD WORD1
7745 7106 CLL RTL
7746 7006 RTL
7747 7006 RTL
7750 1355 TAD WORD2
7751 5743 JMP I ASSEMB
7752 5262 LORI, JMP LOR

9
7753 0006 HIRI, HIR-LOR
7754 0000
7755 0000 WORD1=7776
 WORD2, 0
 *7777
7777 5301 JMP BEGIN

ASSEMB 7743
BEGG 7626
BEGIN 7701
BEND 7675
CHANGE 7657
CHAR 7614
CHEX 7732
CHKSUM 7615
FMASK 7656
GO 7715
HIR 7670
HIRI 7753
LOR 7662
LORI 7752
MASK 7674
MEMFLD 7736
MEMTEM 7613
M200 7741
M376 7700
ORIGIN 7616
READ 7660
SWITCH 7612
WORD1 7776
WORD2 7755

NOTE: A vertical bar present in the listing before an instruction indicates a revision in the program.