W

COBOL
POCKET REFERENCE

Version 6 Cobol
Version 7 Libol

CONVENTIONS AND EXPRESSIONS

CONVENTIONS

BRACES ()

BRACKETS [)

ELLIPSIS .<es

LOWER CASE
CHARACTERS

UPPER CASE
CHARACTERS
(UNDERSCORED)

UPPER CASE
CHARACTERS
(NOT UNDER~
SCORED)

EXPRESSIONS

indicate that a choice must be made from one
of the enclosed lines.

indicate an optional feature.

indicates that the information contained within
the preceding pair of braces or brackets can
be repeated at the programmer's option .

values, names, and other parameters supplied
by the user.

key words in the COBOL lexicon that must be
used when the formats of which they are a
part are used.

optional key words in the COBOL lexicon
that serve only to make a COBOL statement
more readable.

+ addition

- subtraction

* multiplication
d division

A exponentiation

exponentiation

Relational operators -

Relational operator

IS [NOT] GREATER THAN

Is [NOT] > THAN

IS [NOT] LESS THAN
IS [NOT] < THAN

1S [NOT] EQUAL (EQUALS) TO

Arithmetic expressions - the following symbols:

Meaning

Greater than, not
greater than

Less than, not
less than

Equal to, not

1S [NOT] i-Té equal to
LOGICAL OPERATORS MEANING
OR Entire condition is true
if either or both of the
simple conditions are true.
AND Entire condition is true if

both of the simple conditions
are true.

LINE AND SOURCE PROGRAM FORMAT

A line in a COBOL source program is defined to be a string of adjacent
character positions terminated by the first occurrence of a line termina-
tion character.

There are two source program formats which are acceptable to
DECsystem-10 COBOL: conventional and standard. Unless the "/S"
switch is included in the command string or the special sequence numbers
created by LINED are detected, the compiler will assume that the source
program is written in the standard format.

CONVENTIONAL FORMAT

CONTINUATION IDENTIFICATION
COLUMN COLUMN
MARGIN L MARGIN A MARGIN B MARGIN R
| 2 3 45 617 8 900 11 12 131 e .72 73 80
(R i 5T JAX ERRTREE .
SEQUENCE AREA A AREA B IDENTIFICATION
NUMBER AREA AREA

CONTINUATION
AREA

Margin L designates the leftmost (First) character position of a line.

The continuation column designates the seventh character position
relative to the left margin.

Margin A designates the eighth character position relative to the
left margin.

Mergin B designates the twelfth character position relative to the
left margin.

The identification column designates the seventy=third character position
relative to the left margin.

Margin R designates the rightmost (eightieth) character position of
a line.

The sequence number area is a six-character field beginning at
margin L that normally contains a sequence number. The compiler
ignores this field.

The continuation area occupies one character position in the con=
tinuation column.

Area A occupies four character positions beginning at margin A,

AIl division-names, section-names, and paragraph-names must begin
in area A, In the DATA DIVISION, the FD entry must begin in
area A and level-number entries can begin in area A, but are not
required to,

Area B occupies 61 character positions beginning at margin B and
ending at column 72, All remaining entries begin in area B.

The identification area occupies eight character positions beginning
at the identification column and ending at margin R.

STANDARD FORMAT

COLUMN O
MARGIN A MARGIN B MARGIN R
0 I 2 3 4 5 (S = 3 5 ot g 00 00 R0 G a0 B
N)
CONTINUATION AREA A AREA B
AREA

Column 0 designates a character position that is not counted by the
compiler, It is only used for comment or continuation.

Margin A designates the first character position.
Margin B designates the fifth character position relative to Margin A

(not column 0). To reach margin B, the user should type horizontal
tab,

Margin R designates the rightmost character position of a line.
The continuation area occupies one character position in column 0,

Area A occupies four character positions beginning at margin A. All
division-names, section-names, and paragraph-names must begin in
area A, In the DATA DIVISION, the FD entry must begin in area A
and level-number entries can begin in area A, but are not required
to begin there,

Area B occupies up to 101 character positions, beginning at margin B.

All remaining entries begin in area B, On an interactive terminal,

the user can reach margin B by typing horizontal-tab anywhere in

area A (or in column 0). Area B is terminated by a line-feed, form feed or
vertical tab usually preceded by a carriage return.

PROGRAM STRUCTURE

IDENTIFICATION DIVISION

General structure

IDENTIFICATION DIVISION.

[PROGRAM-ID .[program-name] [comment paragraph .]
[AUTHOR. comment paragraph .] -
[TNSTALLATION. comment paragraph ol
[DATE-WRITTEN, comment paragraph .|
[DATE-COMPILED. comment paragraph .]
[SECURITY . comment paragraph] =

[REMARKS . comment paragraph . |

ENVIRONMENT DIVISION

General structure

ENVIRONMENT DIVISION .

CONFIGURATION SECTION.,

[SOURCE—COMPUTER . [comment-paragraph] o

DECSYSTEM-10
[OBJECT-COMPUTER. BP0

CHARACTERS
[MEMORY SIZE integer-1 WORDS]
MODULES

[SEGMENT-LIMIT IS integer-2] L]

SPECIAL-NAMES, [CONSOLE IS mnemonic-name-1]

[CHANNEL (m) IS mnemonic-name=-2

[, CHANNEL (n) IS mnemonic-name=3].. .]

[ON STATUS IS condition-name-1]
[OFF STATUS IS condition-name=-2]
[SWITCH (m) ON STATUS IS condition-name-1

[%: STATUS IS condition-name-2]
OFF STATUS IS condition-name=-2

[ON STATUS IS condition-name-1]

(IS mnemonic-name-4

.

[SWITCH (0) oo ...]

[literal=1 IS mnemonic-name=-5]
[CURRENCY SIGN IS literal-2]
[DECIMAL=-POINT IS COMMA] -

INPUT-OUTPUT SECTION.

FILE-CONTROL. SELECT [OPTIONAL] file-name

ASSIGN TO device-name=-1 [,device-name-2] ...

REEL
[FOR MULTIPLE {UNI }

integer=2 AREA
[RESERVE {& } ALTERNATE [AREAS}

FILE LIMIT IS
FILE-LIMIT IS
FILE-LIMITS ARE
FILE LIMITS ARE

data-name-1 } data-name-2
literal-1 Uald9) literal -2
data-name-3 data-name-4
literal-3 fEHRUA literal -4

SEQUENTIAL

ACCESS MODE IS RANDOM
INDEXED [DEFERRED OUTPUT]

(e

[PROCESSING MODE IS SEQUENTIAL]
[ACTUAL KEY IS data-name=-5]
[SYMBOLIC KEY IS data-name=6,
RECORDKEY IS data-name-7]

ASCII
RECORDING [MODE IS SIXBIT]
BINARY

N
o
o

|
O

ODD
[DENSITY IS 5] [PARITY IS {m}]

E
O

[SELECT: o s'eresel zioio

_:
I-O-CONTROL.

REEL
RERUN EVERY EMDIGP {UNIT} OF file-name-1

integer-1 RECORDS
[SAME {EECR?RD} AREA FOR file-name-2,

file=name-3, [, file-name-4] . . .]

MULTIPLE FILE TAPE CONTAINS file-name=-5
[POSITION integer-2]

[,file-ncme—é[POSlTlON infeger-3]] ...] .

-

J

I

DATA DIVISION

General Structure

DATA DIVISION.

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
COMMUNICATION SECTION .
REPORT SECTION .

DATA DIVISION STATEMENTS

FILE DESCRIPTION
FORM:

FD file-name

RECORDS
BLOCK CONTAINS [integer-1 TO] integer-2 {C—HmERS}

RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS

[STANDARD

RECORD Is STANDALD
["ABEL RECORDS ARE} {9’!‘@ }
(&

record-name-1 [, record-name-2] ...

REPORT IS
REPORTS ARE report-name=-1 [, report-name=2...]

data-name-1
[VALUE OF{{IDENTIFICATION} {I(ferul -1 }J

[DATE “WRITTEN 15 { ﬂ‘::;‘l“j’;"e'z)]

data-name-3
literal =3, literal-4

[USER-NUMBER 1S (

DATA {Eégggg;i\RE} record-name-3 [,record-name=-4] ...

BLOCK CONTAINS
FORM:

. 5 RECORD(s)
BLOCK CONTAINS [integer-1 IC_)_] integer=2 {WRS}

DATA RECORD
FORM:

DATA {EEEgEg;ZRE} record-name-1 Erecord-ncme—Z] cos

FD filename

FORM:

ED filename

LABEL
FORM:

OMITTED
RECORD 1S S TANITS DT
LABEL {RECORDS ARE} STANDARD
record-name-1 [, record-name=2] ...

RECORD CONTAINS
FORM:

[RECORD CONTAINS | integer-1 E] integer-2 CHARACTERS:I

REPORT
FORM:

REPORT IS
REPORTS ARE report-name~-1 E, reporf—nome-Z:] el

SD file-name
FORM:

. RECORD IS
SDRflcenarme !:MA‘ {RECORDS ARE} record-name-1

Erecord-name—2] o]

[RECORD CONTAINS[integer—l E]inheger—? CHARACTERS]._

VALUE OF
FORM:

ID data-name-1
YALUEOF | (Binniicanion) ' (e)]

dafa-ncme-2>:]
(DATE-WRITTEN 1S \literal-2

data-name-3
[usercnvumse 15 (e)]

DATA DESCRIPTION ENTRY
FORM:

data=-name-1
level-number FILLER

(REDEFINES data-name-2']

[{W} 1S picfure-srring]

r COMPUTATIONAL ~ 7
COMP -
COMPUTATIONAL-I
COMP-1 —
DISPLAY

DISPLAY-6

DISPLAY-7

INDEX

DATA BASE-KEY

(. =

SYNCHRONIZED LEFT
SYNC RIGH

JUSTIFIED RIGHT
JUST LEFT

[BLANK WHEN ZERO]

[VALUE IS |irero|—l]

[OCCURS [integer-1 R] integer-2 TIMES

[USAGE IS]

I:DEPENDING ON data-name-1]

ASCENDING KEY is data-name=-2 [, data-name=3] «eoless
DESCENDING

[INDEXED BY index-name-1 [, index-name-2] ...]] B

RENAMES ENTRY

66 data-name-1 RENAMES data-name=-2 [TH RU duto-ncme—3:]

CONDITION NAME ENIRY

88 condition-name {M IS E} literal-1 [THRU |iterc|-2]

VALUES AR
,literal -3 [I'HRU Iiteral-ﬂ Siale g

RECORD DESCRIPTIONS
FORM:

01 data=-name

BLANK WHEN ZERO
FORM:
[BLANK WHEN ZERO]

CONDITION-NAME (Level-88)
FORM:

- VALUE IS q s
88 condition-name {WES ARE} literal-1 [THRU ||terc|—2]

,literal-3 [THRU |irera|-4j oTete .

DATA-NAME/FILLER

FORM:
level-number el
FILLER

JUSTIFIED

FORM:
JUSTIFIED RIGHT
JUST LEFT

LEVEL-NUMBER

FORM:
data-name
level-number FILLER >
OCCURS
FORM:

[:OCCURS [integer-1 T_O__]integer-Z TIMES

[DEPENDING ON data-name-1]

[{%Z—SS;%)II)_'I\I_I\?G} KEY 1S data=-name=-2 l:,data-nome-ﬂ ..,] s

[INDEXED BY index-name-1 [,index-nclme—Z:] ..,.:]]

PICTURE

FORM:
PICTURE . .
PIC IS picture=string

REDEFINES
FORM:

level-number data-name-1 REDEFINES data-name=-2

RENAMES
FORM:

66 data-name-1 RENAMES data-name-2 [THRU dclro-name-SJL

SYNCHRONIZED

FORM:
SYNCHRONIZED LEFT
B —— RIGHT
USAGE
FORM:
COMPUTATIONAL
CoMP
COMPUTATIONAL-I
COMPT
[[USLGE 15) BRPLAY]
BISPLAY -6
DISPLAY =7
TNDEX
DATABASE-KEY
VALUE
FORM:

FORMAT 2

FORMAT 1: [VALUE IS In-erc1|]

literal-1 [TH RU literal -2]

{:hferal -3 THRU literal 4] e

REPORT SECTION

REPORT DESCRIPTION (RD)
FORM:

RD report-name

[CODE mnemonic-nome]

{CM IS } [i:cli::il;ier—] [,identifier-2]
CON———E—QLS-ARE FINAL, identifier-1 [, identifier-2] ...

LIMIT IS LINE
[”Aﬂ {LIMITS ARE} Inbeger=i {LINES
[HEADING integer-2] [FIRST DETAIL integer-3]

[LAST DETAIL integer-4] [FOOTING infeger-S]:l .

CONTROL
FORM:
FINAL

CONTROL IS } e

—_— identifier-1 [, identifier-2] ...
{M Gl iFINAL, identifier-1 [, identifier-2] , ..
PAGE-LIMIT
FORM:

LIMIT IS . LINE
M{quTs ARE} fifeasrc] {UNES}
[HEADING integer-2] [FIRST DETAIL integer-3]

[LAST DETAIL integer-4] [FOOTING integer=5]

CODE
FORM:

CODE mnemonic-name

REPORT GROUP DESCRIPTION

Option 1

01 [data-name-1]

integer-1
LINE NUMBER IS PLUS in'reger—Z}
NEXT PAGE

integer-3
NEXT GROUP IS PLUS inreger-4}
NEXT PAGE

REPORT HEADING
RH

PAGE HEADING
PH

CONTROL HEADING identifier-1
CH FINAL

DETAIL
DE

TYPE IS

cF FINAL
PAGE FOOTING
L
L REPORT FOOTING

CONTROL FOOTING} {idenﬁfier-Z}

RE

DISPLAY
[{USAGE IS]{ DISPLAY-6
DISPLAY-7

Option 2
level-number [data-name-1]
[BLANK WHEN ZERO]
[COLUMN NUMBER IS integer-1]
[GROUP INDICATE]
[(ee) o]
integer-2

LINE NUMBER IS PLUS integer-3
NEXT PAGE /!

[{ETURE} 1S characrer-sfring]
identifier-1
)' RESET ON FINAL]

SOURCE IS identifier-2
SUM identifier-3 [, identifier-4] . . .[UPON data-name-2]
VALUE IS literal-1

[[USAGE 15] DISPLAY]

DISPLAY -6
DISPLAY-=7

COLUMN NUMBER
FORM:

COLUMN NUMBER IS integer

GROUP INDICATE

FORM:

GROUP INDICATE
LINE NUMBER
FORM:

LINE NUMBER IS integer-1

PLUS integer-2
NEXT PAGE

NEXT GROUP
FORM:

NEXT GROUP IS integer=-1

PLUS integer-2
NEXT PAGE

RESET
FORM:

RESET ON identifier-1

FINAL

SOURCE
FORM:

SOURCE IS identifier
SUM
FORM:

SUM identifier-1 [, identifier-2]... [UPON data-name-1]

Y PE

FORM:

REPORT HEADING
L

PAGE HEADING
Hl

CONTROL HEADING | ['identifier-n
(<) FINAL

DETAIL
DE

TYPE IS

CONTROL FOOTING identifier-n
CF FINAL

PAGE FOOTING
P—F
REPORT FOOTING

7 J
~

PROCEDURE DIVISION

General Structure

The first entry in the PROCEDURE DIVISION of a source program
must be the division header:

PROCEDURE DIVISION [USING identifier-1 [, identifier-2]...] o

The next entry must be either the DECLARATIVES header or a
paragraph-name or section-name .

PROCEDURE DIVISION STATEMENTS

ACCEPT STATEMENT
FORM:

ACCEPT identifier-1 [,identifier-2] ...[FROM mnemonic-name]

ADD STATEMENT
FORM:

Option 1
identifier-1 identifier-2
20D, {Hteral—] } § {Iiferc:|-2 } £t
TO identifier-m [ROUNDED]

, identifier-n [ROUNDED]] ssls
[ON SIZE ERROR statement=1 [,statement-2] ... Lj

Option 2

identifier-1 identifier-2 identifier-3
2D {lirerul-l } g {Iireral-Z } ! {Ii’rercl-S } o0

GIVING identifier-m [ROUNDED]

L identifier-n [ROUNDED]]

[ON SIZE ERROR statement-1 [,statement-2] ... ;]
Option 3

CORRESPONDING
DD {CORR "

} identifier-1 TO identifier-2

[ROUNDED] [ON SIZE ERROR statement-1

[,statement-2]]

ALTER STATEMENT
FORM:

ALTER procedure-name-1 TO PROCEED TO procedure-name-2
[, procedure-name-3 TO PROCEED TO procedure-name=-4] ...

CALL STATEMENT
FORM:

EALLL W(EDeooramengng [USING identifier-1 [,identifier-2]]

enfry-name

CLOSE STATEMENT
FORM:

REEL NO REWIND
CLOSE file-name [{UWIT] WITH LOCK }
—_ DELETE
NO REWIND

[,file—nome-l [EETE:-T}] WITH { TOCK "}
LS DELETE

COMPUTE STATEMENT
FORM:

EQUALS
COMPUTE identifier-1 [ROUNDED] / EQUAL TO

identifier-2
{ literal-1 }
arithmetic-expression
[ON SIZE ERROR statement-1 [, statement-2] ... ;]

DELETE STATEMENT
FORM:

DELETE record-name INVALID KEY statement-1 [, statement-2]

DISPLAY STATEMENT
FORM:

literal-1 literal -2
DISELAY: {idenfifier-]} |:' {idenﬁfier-Z}}
[UPON mnemonic-name] [WITH NO ADVANCING]

DIVIDE STATEMENT

FORM:
Option 1
DIVIDE {i:’f’;gr'?"]} INTO identifier-2 [ROUNDED]
I:REMAINDER identifier- 4}
[ON SIZE ERROR statement-1 [,sfctemenf—Z] olele ;]
Option 2
DIvIDE | 1enfifier2 1 gy dentifier-1 | ROUNDED
literal -2 — —_
[REMAINDER identifier- 4j|
[ON SIZE ERROR statement-1 [,sfofement-?] 30 L]
Option 3

literal-1 literal -2

DIVIDE {'de"””e"'} INTO 'fie“““e"z} GIVING identifier-3
[ROUNDED] [REMA!NDER idenfifier-‘i]

[ON SIZE ERROR statement-1 [,stqfemenf—?] oo :I

Option 4

DIVIDE {'de"“f'e"z} BY {‘de“”f'e"]} GIVING identifier-3

literal =2 literal -1

[ROUN DED] [REMAINDER identifier—4j

l:ON SIZE ERROR statement-1 [,sfufement—Z] ces o

ENTER STATEMENT
FORM:

MACRO
ENTER { FORTRAN-IV program-name
FORTRAN

identifier-1
USING { literal -1 }

procedure-name-1

identifier-2
, { literal -2 }
. procedure-name-2

ENTRY STATEMENT
FORM:

ENTRY enfry—name[USlNG identifier-1 [,identifier, identifier-2] .. .] .

EXAMINE STATEMENT
FORM:

EXAMINE identifier

ALL
TALLYING { LEADING } literal-1 [REPLACING BY |ifero|-2]
UNTIL FIRST

ALL
REPLACING{LEADiNG } literal =1 BY literal-2
[UNTIL] FIRST

EXIT STATEMENT
FORM:

paragraph-name. EXIT.

EXIT PROGRAM STATEMENT
FORM:

EXIT PROGRAM .

GENERATE STATEMENT
FORM:

GENERATE identifier
GO TO STATEMENT
FORM:
Option 1
GO 1O [procedure-name-]]
| .
Option 2

GO TO procedure-name-1, procedure-name-2
[, procedure-name-3] ...

DEPENDING ON identifier

GOBACK STATEMENT
FORM:

GOBACK .

IF STATEMENT
FORM:

IF conditional expression

{ statement-1 [, stufemenf-?} ...}

NEXT SENTENCE

ELSE statement-3 " sfatemenr-4] A

NEXT SENTENCE

INITIATE STATEMENT
FORM:

INITIATE report-name-1 [,reporf—ncme—?] I
MOVE STATEMENT
FORM:

Option 1

MOVE {;?j;:f_‘f“} TO identifier-2

[, identifier-3] eee

Option 2

c
MOVE {ECO)';:ESF’——O&N—Q} identifier-1 TO_identifier-2

MULTIPLY STATEMENT
FORM:

Option 1

MULTIPLY {'dem'f‘e"]} BY identifier-2 [ROUNDED]

literal =1

[ON SIZE ERROR statement-1 [,statement=2] ,,. _._]

Option 2
identifier-1 identifier-2
MULTIELY, {Iiterul—l } s {Iiteral—z }
GIVING identifier-3 [ROUNDED]

[ON SIZE ERROR statement-1 [, statement-2] .. L]
NOTE STATEMENT
FORM:

NOTE character- string .

OPEN STATEMENT
FORM:

INPUT "
{WUT} file-name-1 [WITH NO REWIND]

OPEN [,file—nume-z [WITH NO REWIND]] -

{:—_N—OPUT—OUTPUT} file=name-3 [, file-name-4] ... | ...

PERFORM STATEMENT
FORM:

Option |

PERFORM procedure-name-1 [THRU procedure—name—?}

Option 2

PERFORM procedure-name-1 [THRU procedure-nqme-Z}
{Edenfifier-]} TIMES
integer-1 _—
Option 3

PERFORM procedure-name-1 [THRU procedure-name-?]

UNTIL condition=1

Option 4

PERFORM procedure-name~-1 [THRU procedure-ncme—?]

pARRUIRLS, identifier=

VARYING identifier-1 FROM {‘“e“’"' 2}

literal -2 -
BY identifier-:} UNTIL condition=1

AFTER VARYING identifier-4 FROM { liferal=3
—_ ——— identifier-5

BY {'“e“’"“ 6} UNTIL condition-2

identifier-

identifier-

literal -6 it
BY identifier—‘?} UNTIL condltton—S]

[AFTER VARYING identifier-7 FROM {'“e“"'s 8}

READ STATEMENT
FORM:

READ file=-name RECORD

i o AT END
[INTO |denhf|er] {INVHI_D KEY} statement-1

[:, statement-2] cee o

RELEASE STATEMENT
FORM:

RELEASE record-name [FROM idenfifier]

RETURN STATEMENT
FORM:

RETURN file-name RECORD[INTO identifier] AT END
statement-1 L,stafemenf-?] vee o

REWRITE STATEMENT
FORM:

REWRITE record-name EFROM idenfifier]
INVALID KEY statement=1 [,statement=2] ... £

SEARCH STATEMENT
FORM:
Option 1

SEARCH identifier-1 [VARYING identifier-2] [AT END statement-1

[,statement=2] ...]

. statement-3 [, statement-4] ...
WHEN condition=1 {NEXT SENTENCE }

[, WHEN condition-2 {srafemenf—5 [statemenf-é]..-} (.

NEXT SENTENCE
Option 2
SEARCH ALL identifier-1 [AT END statement-1 [,statement-2]...]

WHEN condition=1 {sfctemenf-:i [,statement-4] .. }

NEXT SENTENCE

SEEK STATEMENT
FORM:

SEEK file=name RECORD

SET STATEMENT

FORM:
0 identifier-3
SET identifier-1 [, identifier-2] ... { UP BY } literal-1
DOWN BY
SORT STATEMENT
FORM:
ASCENDING

DESCENDING KEY data-name-1

SORT file=name-1 ON {
ASCENDING } KEY data-name-3

[,data-name-2]...[ON {WDI—NG

[,data-name-4] .o .] o ..

INPUT PROCEDURE IS procedure-name-1 [THRU procedure-name=2]
USING file-name-2

OUTPUT PROCEDURE IS procedure-name-3 [THRU procedure-name-‘ﬂ}
GIVING file=-name=-3

STOP STATEMENT
FORM:

literal
STOP {RUN } .

STRING STATEMENT

FORM:
identifier-1 , identifier-2
DIRINGE {li’rerol—l }[, literal -2] o0
identifier-3
DELIMITED BY (literal-3
SIZE
identifier-4 , identifier=5
"] literal-4 , literal-5 Sl
identifier-6
DELIMITED BY literal -6 oo
SIZE

INTO identifier-7 [WITH POINTER identifier-8)

[; ON OVERFLOW statement-1]

SUBTRACT STATEMENT
FORM:

Option 1

sumacr { gt} (i) |

FROM identifier-m [ROUNDED] [,idenrifier—n [ROUNDEDJ]
[ON SIZE ERROR statement-1 [, statement-2] ... ;]

Option 2

summser (et} [(i)

FROM {i?;’:;‘ﬂ;"m} GIVING identifier-n [ROUNDEDJ

[idenﬁfier—p [ROUNDED]—J ele

[ON SIZE ERROR statement=1 [, statement-2] ... :]

Option 3
CORRESPONDING

SUBTRACT { CORR

} identifier-1 FROM identifier-2

[ROUNDED] [ON SIZE ERROR statement-1

[, statement-2] ... _._:I

TERMINATE STATEMENT
FORM:

TERMINATE report-name-1 [, report-name-2]

TRACE STATEMENT
FORM:

ON
TRACE {ﬁ:

UNSTRING STATEMENT
FORM:

UNSTRING identifier-1

literal =1

identifier-3
o (o)

INTO identifier-4 [, DELIMITER IN identifier-5]

[,COUNT IN identifier-6]

[,identifier-7 [, DELIMITER IN identifier-8]

[,COUNT IN identifier=9]] ...

[WITH POINTER identifier-10] [TALLYING IN identifier-11]
[; ON OVERFLOW statement-1]

DELIMITED BY [éE] {ldennfler—Z}

USE STATEMENT

FORM:
Format 1
file-name-1 [OPEN]
INPUT
USE AFTER STANDARD ERROR PROCEDURE ON(OUTPUT
1-O
TNPUT-OUTPUT
Format 2

BEFORE BEGINNING
USE { } STANDARD [{ }]
AFTER ENDING

file-name-1

REEL INPUT
FILE LABEL PROCEDURE ON¢ OUTPUT .
UNIT -0
INPUT-OUTPUT
Format 3

USE BEFORE REPORTING identifier=1 .

WRITE STATEMENT
FORM:

Option 1
WRITE record-name-1 [FROM idenfifier—]]

identifier-2 LINES
{BEFORE} ADVANCING{infeger-] LINES }

AFTER d
e mnemonic-name

Option 2
WRITE record-name-1., [FROM idenfifier-l] INVALID KEY

statement-1 [,statement-2] ...

COBOL LIBRARY
COPY STATEMENT
FORM:
COPY library-name
word=-2
REPLACING word-1BY { identifier-1 }

procedure-name-1

word-4

identifier-2 cos
[’ WorgSIBY {procedure—ncme-Z}] J

UTILITY PROGRAMS

The LIBARY, SORT, ISAM, RERUN AND COBDDT utility programs
aid the user in accomplishing COBOL-oriented tasks.

LIBARY

The command string to LIBARY is:

. R LIBARY

f FILET .LIB,FILE2,LST=FILE3.LIB

The six commands to position the input and scratch files are described

in Table I,

TABLE |
Commands for Positioning Files

Command

Function

INSERT library-name

INSERT library-name,
dev:file.ext [ppn]

DELETE library-name

REPLACE library-name

REPLACE library-name
dev:file .ext [ppn]

CORRECT library-name

The input file is copied to the scratch file,
starting at the current position of the files,
until a.source routine with a name alphabetic-
ally greater than the one specified is encoun-
tered, The new name is inserted in the Fine
Table, and the program awaits another com=
mand.

The entire file is inserted into the library with
the name indicated by library-name. The file
must be ASCII, If there are line numbers in
the file, they are included in the file, If
there are no line numbers, they are added to
the lines, starting with 10 and incrementing by
10,

The input file is copied to the scratch file
until the source routine with the name speci-
fied is encountered. The input file is then
positioned after that source routine.

The program does a DELETE followed by an
INSERT.

The file named library-name is replaced with
the specified file. The new file must be ASCII,
If there are line numbers in the file, they are
included in the file. If there are no line num=
bers in the file, they are added to the lines,
starting with 10 and incrementing by 10.

The input file is copied to the scratch file
until a source routine with the name speci-
fied is encountered. Typing /N after the
CORRECT command causes new line numbers
to be applied to the output version of the
source language routine.

TABLE | (CONT.)

Commands for Positioning Files

Command Function

END The remainder of the input file is copied fo
the scratch file, and the output file is
created, and the program then terminates.

RESTART The remainder of the input file is copied to

EXTRACT library-name
dev:file .ext [ppn]

the scratch file. The scratch file then be-
comes the input file, and a new scratch file
is started. This command allows the user to
update routines out of library-name order.

A file with the specified name and extension
on the specified device is created from the
file named library-name. If the /N switch
is included after the file descriptor, line
numbers are put on the lines of the output
file. If the /N switch is not included, the
file will not have line numbers.

The three commands to alter the contents of a source file are described

in Table Il

TABLE I

Commands for Altering Contents of Source File

Command

Function

Dnnnnnn

The input file is copied to the scratch
file until nnnnnn, the specified line,
is encountered. That line is then
skipped.

Innnnnn COBOL-statement The input file is copied until either a

line having a larger line=number or a
new source language routine is en=
countered. The COBOL-statement is
inserted at that point.

Rnnnnnn COBOL-statement The input file is copied until the

specified line is encountered. The
COBOL-statement with that line-
number is replaced by the statement
in the command.

SORT

The command string to SORT is:

dev:outfil .exf/sw]/swz. . ./swn = dev:infil .ex'r/sw]/sw2 eesW

The switches to the SORT program are shown in Table I1l.

TABLE Il1

Switch Meaning

/A The file is recorded in ASCII mode.

/Bn A block contains n records; n is a decimal number,
If the /B switch is omitted, it is assumed that the
file is unblocked.

/Kabem .n /K defines the sort key according to the following

parameters:

S The field has an operational sign.
U The field has no operational sign; its
magnitude is used.

a
a

o

If this parameter is omitted, a numeric field is assumed
to have an operational sign (S).

X The field is alphanumeric.

C The field is COMPUTATIONAL.

= F The field is COMPUTATIONAL-1
(Floating point).

b = N The field is numeric display.

[l

b
b
b

If this parameter is omitted, the field is assumed to be
alphanumeric if the sign parameter (a) is also omitted.
If this parameter is omitted and the sign parameter is
included, the field is assumed to be numeric display
(b=N). Data formats are described in Chapter 5, the
USAGE clause.

A The field is to be sorted in ascending

c =
order.

¢ = D The field is to be sorted in descending
order,

If this parameter is omitted, the field is sorted in
ascending order.,

m is the starting byte or position of one
field (e.g., the starting column on a
card).

n is the size of the field in either bytes

or digits, depending on the context.

More than one key can be entered with the /K switch,
providing the keys are separated from one another by
commas (e.g., /Kabecm.n,abem.n...). The keys are
sorted in the order that they are entered in the command
string o

TABLE 111 (CONT.)

Switch Meaning
/Lam /L specifies the labeling convention.,
a= The labels are standard.
a = O The labels are omitted.
a = N The labels are nonstandard.
m specifies the size of a nonstandard

label in bytes.

If the /L switch is omitted, it is assumed that the
labels are omitted unless a file name is specified or a
directory device is used. In the latter cases, standard
labels are assumed.

/Rm /R indicates the size of the largest input record, where
m is the size of the record in bytes.

/S The file is recorded in SIXBIT mode.
/Tdev or /T indicates that the specified device is to be used as
ey a scratch device during the sort. More than one de=

vice can be specified, providing the devices are
separated by commas (e.g., /Tdevl odev,,.. *)e

RERUN

The command string to run the RERUN program is:
« RRERUN

ISAM

ISAM performs three basic functions. The command string to build an
indexed sequential file from a sequential file is:

<R ISAM
*devl :indfil .ext[ppn1], dev2:datfil .ext=dev3:seqfil .ext[ppn2]/B

The command string to maintain an indexed sequential file is:

<R ISAM
*devl :indfil .ext[ppnl], dev2:datfil .ext=infil .ext[ppn2]/M

The command string to pack an indexed sequential file is:

LR ISAM
*devl :seqfil .ext{ppnl]=dev2:indfil .ext[ppn2] /P

The command string to ignore errors when packing an indexed
sequential file is:

LR ISAM
* devl:seqfil .ext{ppnl]=dev2:indfil .ext[ppn2]/P/I
The command string to read magnetic tape labels when

building an indexed sequential file is:

R ISAM
* devl;indfil .ext[ppn] , dev2:datfil .ext=MTAn:seqfil .ext/B/L

The command string to write magnetic tape lebels when packing
an indexed sequential file is:

LR ISAM
*MTAn:seqfil .ext=devl :indfil .exr@pr_\) /P/L

COBDDT
COBDDT is loaded and started by three methods:

.LOAD %"LOCALS"dev:prognm, SYS:COBDDT
TSTART

LR LINK
*/LOCALS dev:prognm, SYS:COBDDT/GO
START

or

.DEBUG dev:prognm

The commands to COBDDT are listed below .

ACCEPT COMMAND
FORM: ACCEPT
ACCEPT data-name

BREAK COMMAND
FORM: BREAK paragraph-name

CLEAR COMMAND
FORM: CLEAR paragraph-name

DISPLAY COMMAND
FORM: DISPLAY
DISPLAY data-name

HISTORY BEGIN COMMAND
FORM: HISTORY BEGIN

HISTORY INITIALIZE COMMAND
FORM: HISTORY INITIALIZE

HISTORY REPORT COMMAND
FORM: HISTORY REPORT

MODULE COMMAND
FORM: MODULE program-name

PROCEED COMMAND

FORM: PROCEED
PROCEED n

WHERE: "n" is a number

STOP COMMAND
FORM: STOP

TRACE COMMAND
FORM: TRACE ON
TRACE OFF
WHERE COMMAND
FORM: WHERE

RUNNING THE COBOL COMPILER DIRECTLY

The command to run the COBOL compiler is:
R COBOL

A command to the compiler is of the general form:
*RELFIL, LSTFIL = SRC1, SRC2, ...

EXAMPLE:
*MYPROG .REL, MYPROG .LST=MYPROG .CBL,MYPROG .CBL

can be used to exclude an output file. For example: to pro-
duce no listing file use:

*, == MYPROG
to produce no binary file use:
* -, = MYPROG
to produce no output file
* -, -=MYPROG

The switches to the COBOL compiler are shown in Table IV.

TABLE IV
COBOL Switch Summary

Switch

Action by Compiler

A

H

N

Allows the listing of the code generated (the source
program is listed whenever a listing file is specified).

Produces a cross-reference listing of all user-defined
items in the source program.

Checks the program for errors but does not generate
code.

Types a description of COBOL command strings and
lists the switches. When this switch is used, the other
parts of the command string are ignored.

Forces the compiler to suppress generation of a start-
ing address for a main program.

Forces the compiler to generate a starting address
for a subprogram.

Uses the preceding file descriptor as a library file
whenever it encounters the COPY verb.

1. This switch is legal only with source files.

2. The file descriptor is not part of the main pro-
gram,

3. More than one descriptor may have the /L switch.
If the first source file is not a library file, the
file LIBRARY .LIB is used (if present on the DSK)
until the /L file is described.

Prints a map showing the parameters of each user-
defined item (e.g., data-names and procedure-

names) .

The source errors are not typed on the user's terminal

TABLE IV (CONT.)
COBOL Switch Summary

Switch Action by Compiler

P Indicates production mode. Trace calls are not
generated and user symbols are suppressed.

R A two-segment object program is produced. The high
segment will contain the resident sections of the Pro=
cedure Division; the low segment will contain all
else. When the object program is loaded with the
linking loader, LIBOL will be added to the high
segment,

S The source file is in conventional format (with se-
quence numbers in columns 1-6 and with comments
starting in column 73).

w Rewinds the device before reading or writing. (This
is valid for magnetic tape only.)

v 5 Clears the directory of the device before writing.
(This is valid for output DECtape only.)

EXAMPLE: *MYPROG .REL, MYPROG .LST=MYPROG .CBL/E

MONITOR COMMANDS TO RUN THE COBOL COMPILER

Compilation of COBOL source program files can be performed by use
of the COMPILE, LOAD, EXECUTE, and DEBUG commands.

COMPILE COMMAND
FORM: .COMPILE filename .ext
EXAMPLE: . COMPILE TEST .CBL

LOAD COMMAND
FORM: .LOAD filename .ext
EXAMPLE: ,LOAD TEST.CBL

EXECUTE COMMAND
FORM: EXECUTE filename .ext
EXAMPLE: ~ .EXECUTE TEST.CBL

DEBUG COMMAND

FORM: .DEBUG filename .ext
EXAMPLE: ~ .DEBUG TEST.CBL

COBOL Reserved Words

In the listing below, words preceded by no symbols are standard COBOL
reserved words that are also reserved in DECsystem- 10 COBOL. Words
preceded by a single * are ANSI standard reserved COBOL, words that
are not reserved in DECsystem-10 COBOL, but should be avoided for
compatibility with other COBOL compilers, Words preceded by **

are reserved in DECsystem=10 COBOL but not in the ANSI standard.

A
ACCEPT
ACCESS
ACTUAL
ADD
*ADDRESS
ADVANCING
AFTER
ALL
ALPHABETIC
ALTER
ALTERNATE
AND
**ANY
ARE
AREA
AREAS
ASCENDING
**ASCII
ASSIGN
AT -
AUTHOR

B

BEFORE

BEGINNING
**BINARY

BLANK

BLOCK

BY

C

**CALL
**CANCEL
CcD
CF
CH
**CHANNEL
CHARACTERS
CLASS
*CLOCK=-UNITS
CLOSE
COBOL
CODE
COLUMN
COMMA
COMMUNICATION
COMP
**COMP-1
**COMPILE
COMPUTATIONAL
**COMPUTATIONAL-1
COMPUTE
CONFIGURATION
**CONSOLE
CONTAINS

CONTROL

CONTROLS

COPY

CORR

CORRESPONDING

COUNT

CURRENCY
**CURRENT

D

DATA
**DATABASE-KEY
DATE
DATE-COMPILED
DATE-WRITTEN
**DBKEY
DE
DECIMAL-POINT
DECLARATIVES
**DECSYSTEM-10
**DECSYSTEM10
**DEFERRED
**DELETE
DELIMITED
DELIMITER
**DENSITY
DEPENDING
DEPTH
DESCENDING
DESTINATION
DETAIL
DISABLE
DISPLAY
**DISPLAY -6
**DISPLAY-7
DIVIDE
DIVISION
DOWN
**DUP
**DUPLICATE

E

**EBCDIC
EGI
ELSE
EMI
**EMPTY
ENABLE
END
ENDING
ENTER
**ENTRY
ENVIRONMENT
%5 EP|
EQUAL
EQUALS

ERROR

ESI
**EVEN

EVERY

EXAMINE
**EXCL
**EXCLUSIVE

EXIT

F

FD
FILE
FILE-CONTROL
FILE-LIMIT
FILE-LIMITS
FILLER
FINAL
**FIND
FIRST
FOOTING
FOR
**FORTRAN-IV
**FORTRAN
FROM

G

GENERATE
**GET
GIVING
GO
**GOBACK
GREATER
GROUP

H

HEADING
HIGH-VALUE
HIGH=-VALUES

l
1-O

1-O-CONTROL
**ID

IDENTIFICATION

IF

IN

INDEX

INDEXED

INDICATE

INITIAL

INITIATE

INPUT

INPUT-OUTPUT
**|INSERT

INSTALLATION

INTO

INVALID
**INVOKE

IS

J

JUST
JUSTIFIED

K

KEY
KEYS

8

LABEL
LAST
LEADING
LEFT
LENGTH
LESS
LIMIT

LIMITS

LINE
LINE-COUNTER
LINES

** INKAGE

LOCK
LOW-VALUE
LOW-VALUES

M

**MACRO
**MEMBER

MEMORY
MESSAGE
MODE

**MODIFY

MODULES
MOVE

MULTIPLE
MULTIPLY

NEGATIVE
NEXT

NO

NOT
NOTE
NUMBER
NUMERIC

O

OBJECT-COMPUTER

OCCURS

**ODD

OF
OFF
OMITTED
ON

**ONLY

OPEN
OPTIONAL
OR
OUTPUT
OVERFLOW

**QOWNER

B

PAGE
PAGE-COUNTER

#*PARITY
#+PDP-10

PERFORM
PF
PH

PIC
PICTURE
PLUS
POINTER
POSITION
POSITIVE
**PRIOR
**PRIVACY
PROCEDURE
PROCEED
PROCESSING
**PROGRAM
PROGRAM-ID
**PROT
**PROTECTED

Q

QUEUE
QUOTE
QUOTES

R

RANDOM
RD
READ
RECEIVE
RECORD
**RECORDING
RECORDS
REDEFINES
REEL
**RELATIVE
RELEASE
REMAINDER
REMARKS
**REMOVE
RENAMES
REPLACING
REPORT
REPORTING
REPORTS
RERUN
RESERVE
RESET
**RETR
**RETRIEVAL
RETURN
*REVERSED
REWIND
**REWRITE
RF
RH
RIGHT
ROUNDED
RUN
**RUN-UNIT

S TIMES

TO
SAME #**TODAY
#*SCHEMA **TRACE
sD TYPE
SEARCH
SECTION U
SECURITY
SEEK UNIT
SEGMENT UNSTRING
SEGMENT-LIMIT UNTIL
SELECT uP
**SELECTIVE #*PDATE
SEND **UPDATES
SENTENCE UPON
SEQUENTIAL USAGE
SET #*JSAGE-MODE
#*SETS USE
*SIGN #*JSER-NUMBER
*#*SIXBIT USING
SIZE
SORT \%
SOURCE
SOURCE-COMPUTER VALUE
SPACE VALUES
SPACES VARYING
SPECIAL-NAMES
STANDARD w
STATUS
STOP WHEN
**STORE WITH
STRING *WITHIN
SUB-QUEUE-1 WORDS
SUB-QUEUE-2 WORKING~-STORAGE
SUB-QUEUE-3 WRITE
#*SUB-SCHEMA
SUBTRACT ~
SUM
#*SUPPRESS ZERO
**SWITCH ZEROES
SYMBOLIC ZEROS
SYNC
SYNCHRONIZED
T
TABLE
TALLY
TALLYING
TAPE
TERMINAL
TERMINATE
TEXT
THAN
THROUGH
THRU

TIME

TABLE V

The following table gives the collating sequences for ASCII (DISPLAY=7)
and SIXBIT (DISPLAY-6) fields as used in condition comparisons.

ASCII ASCII
SIXBIT Character 7-Bit SIXBIT Character 7-Bit
00 Space 040 60 120
01 i 041 61 Q 121
02 " 042 62 122
03 043 63 S 123
04 044 64 T 124
05 % 045 65 U 125
06 046 66 126
07 ' 047 67 W 127
10 (050 70 X 130
11) 051 71 Y 131
12 . 052 72 z 132
13 + 053 73 i 133
14 , 054 74 134
15 055 75] 135
16] 056 76 4 136
17 / 057 77 < 137
20 0 060 = . 140
21 | 061 - a 141
22 2 062 - b 142
23 3 063 = c 143
24 4 064 = d 144
25 5 065 = e 145
26 6 066 = f 146
27 7 067 = g 147
30 8 070 = h 150
31 9 071 = i 151
32 : 072 - i 152
33 ; 073 - k 153
34 < 074 - | 154
35 = 075 = m 155
36 > 076 2 n 156
37 ? 077 = o 157
40 @ 100 = p 160
4 A 101 = q 161
42 B 102 - r 162
43 C 103 - s 163
44 D 104 - f 164
45 E 105 = v 165
46 F 106 = v 166
47 G 107 ' w 167
50 H 110 = x 170
51 I m = y 171
52 J 112 = z 172
53 K 13 & { 173
54 L 114 N i 174
55 M 15 - } 175
56 N 116 = ~ 176
57 o) 17 o Delete 177

Created by

DECsystem=10 Software Documentation Group

For additional information on the COBOL Language, refer fo the
DECsystem-10 COBOL Language Manual, DEC-10-KC1E-D.

Order number DEC-10-OCRCA-A-D. For single copies of this
card, contact a DEC sales office. Multiple copies may be ordered
in lots of 25 from the Software Distribution Center, Digital
Equipment Corporation, 200 Forest Street, Marlboro, Ma. 01752.

	DEC-10-OCRCA-A-D COBOL Pocket Reference-01.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-02.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-03.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-04.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-05.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-06.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-07.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-08.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-09.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-10.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-11.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-12.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-13.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-14.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-15.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-16.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-17.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-18.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-19.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-20.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-21.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-22.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-23.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-24.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-25.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-26.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-27.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-28.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-29.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-30.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-31.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-32.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-33.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-34.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-35.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-36.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-37.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-38.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-39.tif
	DEC-10-OCRCA-A-D COBOL Pocket Reference-40.tif

