PROGRAM LIBRARY

DECUS NO. 8-143

TITLE FETS-R - A FAST FOURIER TRANSFORM SUBROUTINE
FOR REAL VALUED FUNCTIONS

AUTHOR James E. Rothman

COMPANY Digital Equipment Corporation

Maynard, Massachusetts

DATE August 12, 1968

SOURCE LANGUAGE

ATTENTION

This is a USER program. Other than requiring that it conform to submittal and review standards,
no quality control has been imposed upon this program by DECUS.

The DECUS Program Library is a clearing house only; it does not generate or test programs. No
warranty, express or implied, is made by the contributor, Digital Equipment Computer Users
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or
related material, and no responsibility is assumed by these parties in connection therewith.

FET-R - A FAST FOURIER TRANSFORM SUBROUTINE
FOR REAL VALUED FUNCTIONS

DECUS Program Library Write-up DECUS No. 8-143

1, ABSTRACT

The Fast Fourier Transformation enables computation
of the power spectrum of a time series in a minimum of
time. Specifically, it reduces the number of computations
required to calculate the Discrete Fourier Transformation

N =) i
Si=N Z XkW“k (w=e ™M 0= v=T)
k=o

of a series of N equally time spaced samplesﬁk, X,>,.....
XN-1 wWhere N is a power of 2(N=20), 1In fact, for 1024
time samples, computation time is reduced by over 99%,

FFTS-R (for Fast Fourier Transformation Subroutine)
will transform up to 2048 real points, It is written as
a subroutine, and is I/O independent. The user must tailor
his own input-output procedure to his particular environment,

2, REQUIREMENTS
2.1 Hardware

A 4K PDP-8 with Extended Arithmetic Element Type 182
or a PDP-8/I with EAE Type KE-8/I option is the
minimum necessary hardware,

2.2 Storage

FFTS requires locations 3 to 7, 20 to 107, and 400 to
2401+N, where N is the (octal) number of points being
transformed,

3. LOADING FROCEDURE

Make sure the BIN Loader is in core, If not, load it,
put 7777 in the SR. Press Load Address, FPlace FFTS on the
reader and turn the reader on, Press start, and FFTS will
load., Then load the user's program the same way as above
and start it,

4, USAGE
4,1 calling Sequences

FFTS enables the user to take either the Fast Fourier
Transform, (FFT) or its inverse (IFFT) of a real valued
time series, The subroutine FFT, which begins at 0400,
calculates the FFT. Register DOFFT (location 0060) points
to FFT, so a JMS I DOFFT (=4460) will call FFT. The sub-
routine IFFT beginning at 0076 takes the inverse FFT,
Since location DOIFFT (normally 006l) points to IFFT, IFFT
can be executed simply by writing JMS I DOIFFT (=4461).
Both FFT and IFFT assume that the real data to be handled

has already been stored in memory (see section 5).

After the operation is complete, the results will be
stored in memory in bit inverted order (see section 5.1).
For FFT, the results are the complex co-efficients S5,
(with the appropriate scale factors, as described in>
section 5.2) given by the equation in section 1 (j=0,
1,040, N=1)., For IFFT the results consist of a time
sequence X j (j=0, 1,.eeee,N-1),

NOTE: THE REMARKS IN THE FOLLOWING SECTIONS_ AFFLY TO
IFFT AS WELL AS FFT,

4.2 Execution Times

The following is a table of execution times for the

subroutine,
Number of points transformed Time (Seconds)
2048 4,95
1024 2,20
512 . 963
256 .417
128 . 177
64 .074

5. DETAILS OF STORAGE

5.1 Data Storage

A JMS I DOFFT causes a real time series to be Fourier
transformed, That series is stored in memory. More
explicitly, the data is stored sequentially after
location XRTAB (=2400), For example, the storage scheme
for a N=8 point transformation would be as follows

(xi is the ith time sample):

XR'AI, X0

On exit the results of the transformation will be in
core, Only half of them, however, will actually be
present, This is because the program makes use of a
Hermitian symmetry in the frequency domain to save both
time and storage space, The symmetry is as follows:

If the time sequence X, Xj,...Xy_31 18 real valued,
then the pair of Fourier co-efficients S, and S _, *
obey a complex conjugate symmetry, That’is S = J SN- 4
where '*! denotes taking the complex conjugaté. J
So due to this symmetry, only one half of the co-effi-
cients need actually be computed, since either half is
derivable from the other., Hence FFTS computes only Sg
through Sy /2, introducing a time and space saving factor
of 2, yet sacrificing no information,

After execution the set of complex numbers {SO,---,SN/é}
are to be found in memory. Unlike the original data
set {Xq,ﬂ«}XN-\) they are not in sequential order, but
rather in something called bit inverted order, Bit in-
version means simply the process of re-ordering the bits in
a binary number, For instance, the binary number 001
bit inverted is just 100 (=4). Thus to locate the
Fourier co-efficients S (j<N/2), write j as a binary
number of n-1(=log2(N) 9 bits, bit invert j, and look

2

in that position, For example, to locate S, in memory
for an 8 point transformation (N=8, n=3, n-I=2) write
2 as a binary number of n-1=2 bits, 275 =103, Then
reverse the order of these bits giving 0Ol=1ljp. This
means that S, is stored in position 1, Physically,
then, So is to be found in location 2400 + 2 (1), The
reason that bit inverted j (=1) is multiplied by 2 is that
each S; is complex, so two locations are required to
store ft - one for the real part, the other for the
imaginary one, FFTS adopts the following format: the
imaginary part of a number is stored in the register
immediately following the real part, As a specific
example, the storage layout for the co-efficients of an
8 point transform is written out below:

*2400 -

XRTAB, RE (S) / RE () MEANS REAL FART
IM(So) / IM () MEANS IMAGINARY PART
RE(S2)

IM(S2)
RE(S1)
IM(Sl)
RE(S3)
IM(S3)
RE(S4) 3
IM(Sy)

Sn/2 (here s4) always is placed last, Itfjfdenotep Lt
inverted j, then a general formula for locating the real and
imaginary parts of S S j is (LoCc () denotes location of);

LocC (RE(S 1)) 2400+2J
LOC (IM(QJ)) 2401 + J = LOC (RE(sj))+1

where j is written out as a binary number of n-1
bits, A subroutine INVRT (location 1036) has been
provided to do bit inversion, It can be called by
a JMS I INVERT (INVERT=55), See section 8,

In addition,a subroutine SORTX has been included
which sorts the co-efficients and leaves them in
sequential order, It can be called by a JMS I SORT
(SORT=54), If SORTX were called after an 8 point
transform had been completed, the data buffer would
look like this:

*2400
XRTAB, RE (SQ)
IM(Sg)
RE(S1)
M(S3)
RE(S2)
IM(SZ)
RE(S3)
IM(S3)
RE (S4)
IM(Sg4)

The reason that the co-efficients are not automatically
sorted is that time can be saved by outputing from bit
inverted order, and this possibility should be allowed

for.,

Data Scaling

All calculations in FFTS are done with single precision
fixed point signed binary fractions, The binary point
is located between bit £ and bit 1, leaving an 11 bit
signed mantissa, Bit @ is used as a sign bit., Negative
numbers are formed by taking the two's complement of
the positive binary fraction, So all inputs must be
scaled in magnitude to less than one, The outputs are
also formatted as above, There is also a more subtle
scale factor involved, 1In order to utilize the
maximum number of bits in the transformation it is some-
times necessary to divide by 2 in a computation, As

a result of this a pseudo floating point format has
been adopted in which a variable scale factor (or
exponent) is imposed on all the Fourier co-efficients,
This scale factor or pseudo exponent is found in regis-
ter SCALE (=66) after each transform has leen completed,
The numbers stored in memory are the Fourier co-
efficients multiplied by 2 raised tc the contents of
SCALE, So to retrieve the co-efficients themselves,
merely shift each number C(SCALE) places right, If

any further computations are to be done, better

4

accuracy will be obtained by retaining the pseudo
exponent and leaving the co-efficients in "normalized
form.," 1In the case of the inverse transform, the
desired results (here time samples) are the numbers
stored in memory times 2%n~C(SCALE)).*

6., RESTRICTICNS

6.1 Program Initialization

6.2

Because FFT is a subroutine certain registeré must
be primed before the first entry in order to insure

~proper operation, $pecifically, register M (location

@@2@)must contain the number of points being trans-—
formed (in octal, of course) and register MU (location
@@21) must contain the power of two which M is, that
is, Cc(M)=24C(MU).C(MU) must be at least 3 and no more
than 13g, due to memory limitations,

Input Restrictions

so as to prevent overflow of the single precision
storage, it is absolutely necessary that all data be
less than 1 in magnitude, suvbject to the format
described in section 5,2, (The binary point is to
the right of bit #).

7. METHODS

7.1

Algorithm A

FFTS uses the algorithm discovered by Cooley and Tukey
for the rapid computation of a spectrum, This al-
gorithm, called the Fast Fourier Transformation (or
FFT), permits transformation of N (which must Dbe an
integer power of 2) equally spaced time samples in a
time proportional to NlogpN, wheieas previous methods
required times proportional to N7, This gives a
reduction of 1l-logoN/N. For N= 1024, this is over 99%.
essence, the algorithm makes use of the fact that

Wk - w(kmod N)

* The inverse %s ﬁefined here to be
, — Jk
XJ"’ z S;W
‘ k= ©
(S are real), without the 1/N scale factor,

In

(where wW=e AN) to reduce the number of multiplica-
tions necessary for a transformation., A complete
description and proof of the algorithm used and its
implementation can be found in an article by James Rothman
which appears in DECUSCOFE, Volume 7, Number 3,

8., DETAILS OF OPERATION

The following is a list of useful subroutines and
their operations: (values of the symbols may be found
in the symbol table included in this document,)

Name Call By Functions
FFT JMS I DOFFT Takes the Fouriér Transforma-

tion of the data buffer,
Results in bit reversed order,

IFFT JMS I DOIFFT Takes the Inverse Fourier
Transformation of the data
buffer, Results in bit
reversed order.

SORTX JMS I SORT Sort the data buffer so that
it is in normal sequence,

TRIGET JMS I GETRIG Fetches sine and cosine values,
Specifically, if the AC=K on
entry, the values of sin
(2/wK/N) and cos (2AK/A) are
fetched from an internal trig
table, K must be {or=N/2., A
register COSINE contains the
cosine value and the AC con-
tains the sine value on exit,

INVRT JMS I INVERT Number in AC is kit reversed
and the result is in the AC
on exit,

MULTIF JMS I MULT Rounded single precision signed

multiply., Uses EAE., AC=
multiplier., C(Call address + 1)
=address of multiplicand,
Result in AC on exit,

9. SYMBOL TABLE

A symbol table follows:

SYMBOL TABLE

AUDER
ADDR
AUDWOS
ADDXTR
ADD1
ADD2
ADDS3
ADJSGN
Al

AR
ARG?2
ASR

Bl
BIGgNUY
81L§
BILR
BINMLI
BINMLR
BR
BUILD
C

CAM
CCIA
CHKP ¢
CNOP
CNOTS
COSINE
DATARI
DOFFT
DOIFFT
V1

F

FFT
FLIP
FLIPCT
GLTRIG
Gl

GR
IFFY
INDEX
INVERT
INVRT
K

L
LOOP1
LSR

M
MAXNU
MNOVR?2
MQ A
MWL

MU
MULT

2053
1134
1156
2760
1173
2041
2777
2575
2052
0951
1017
7415
2050
0013
2037
036
2035
2034
2047
2551
0040
7621
2126
2524
2127
2722
2044
6422
2060
0u61
7407
2027
0420
1044
1060
0us57
0046
P45
2076
1133
2255
1436
2033
2125
2450
7417
2020
2023
2024
7521
7421
2021
2U56

SYMBOL TABLE

MULTIP
MUY

N

NMI
NOROT
NOTNOR
NOVER4

: “84MIK
P

Pl

PR

0

0l

R
QUAD1
QUAD2
ReUTLD
RECHK
RESETC
REVERS
$

SCA
SCALE
SCL
SETC
SGNADJ
SGNX
SHF CHK
SHFLLAG
SHFT1
SHFT2
SHFT3
SHIFCT
SHIFT1
SHIFT2
SHIFT3
SHL
SIGN
SINE
SINLOC
SINRET
SINTAB
SORT
SORTX
SWAPED
SYNTH
SYNTHT
TEMPR
TRIGET
WORD
WORDP
XRL,0C

1020
7425
2023
7411
2571
1171
P22
1132
0024

pu32

0030
Bo27
P31
9026
2025
1110
1872
8724
2726
g725
2713
2026
7441
2066
7423
2547
2075
1314
2070
P67
1077
1114
1125
2567
P071
0072
2073
7413
1035
2043
0064
1122
1375
2054
2727
2751
2062
1174
P42
1061
1056
1057
2065

SYMBOL TABLE

XRT AR 2470
XSGN 2074
XTRACT 1242
XTRADD 2063

ADDENDUM TO 8-143 and 8-144

The program was structured so to make the change of eliminating
the EAE requirement with a minimum of effort.

All that need be done is replace each EAE instruction with a
subroutine that performs the given operation using a pseudo
multiplier-quotient. For this purpose the EAE simulator may be
used. This does not allow certain microcodes, and where these
occur in the FFT program, they can be separated into groups of
EAE instructions, all of which together perform the designated
function.

For example CLA MQL MUY (microcoed) could become the three
instructions:

CLAa

MQL

MQA .

CORRECTION TO DECUS NO. 8-143 AND 8-144

ORIGINAL CORRECTED CHANGE
1008 *1000

MULTIP, J MULTIP, g
RAL RAR *
DCA SIGN DCA SIGN
MUY MUY

ARG2, HLT ARG2, HLT
SHL SHL
g
DCA ARG2 DCA ARG2
SHL TAD SIGN *
[/} SHL *
MQL g *
TAD SIGN TAD ARG2 *
CLL RAR SPA *
TAD ARG2 CLA CLL CMA RAR *
MQA NOP *
SZL SZL
CMA 1AC CMA IAC
JMP | MULTIP JMP | MULTIP

SIGN, g SIGN, g

The error was in the way in which rounding was accomplished. This fix was tested by performing a
DOFFT, SORT, DOIFFT, SORT sequence on a 512 point real valued time series with 8-144 and then
summing the absolute value of the imaginary residuals. The fix above reduced the sum by 40 percent.

'CORRECTION TO DECUS NO. 8-143

by

Nezih C. Gegkinli,
Department of Eleetrical Engineering,
Middle Eaet Technical University,

Ankara, Turkey

October 1973

10

-1-

The subroutine DECUS NO. 8-143 (may be DECUS

NO. 8-144 aleo) dogp pot consider an overflow which
may occur during a complex multiplication:

(a+ib).(cos ©+i sin ©) = (a.cos ©@-b 8in ©)+i(a.sinG+b cosd)

= ¢c+id

For J§—<:'|al + |b] € 2, an overflow is apt to occur
for some values of 0, For example, if a = 0.9, b = 0.8,
¢ =n/4, then ¢ = 0,07, d = 1.20, which causes an overflow.

An example to this phenomenon is given in the
appendix.

Therefore, not to have the possibility of overflow,
the numbers must be kept between -1/J2 and 1/J2 .
However, because of the implementation difficulty,
correction is made to keep the numbers between -0.5 and
0.5 (i.e., 6PF1l and 177T.)

CORREGTION TO DECUS NO. 8-143

ORIGINAL CORRECTED

% 1164 % 1164

RAL RTL
CORRECTED

5.2, Data Scaling

All inputs Xi must be scaled such that

691 L X, 1777, vy

11

-2 -
(If the length of the input data sequence is going to
be at least doubled by extending it with zeros, input

data X, met be scaled such that 4981 X, L3,)

APPENDIX \

Aﬁ example to the error of the subroutine

DECUS NO. 8-143 is given below.

INPUT DATA (OCTAL) FOURIER ENERGY SPECTRUM OF THE INPUT DATA (DECIMAL)

poop
£100
#371
1615
1523
2231
2656
3146
3246
3146
2656
2231
1523
1915

'|4'|'| o-k*********************

@256 T¥*** &—— ERROR (MUST BE 1017)
¢354]******

24841 1*

gggg 1

280 :

2000 1

2006 1 <— ERROR (MUST BE gddd)
200 1

@502 Trxxxxksx <o FRROR (MUST BE £000)
pooe 0

2000 1

2e00 1

2oep 1

o800 1

p205 J¥*% <—— ERROR (MUST BE ggdd)
pepe 1

SCALING FACTOR = 2 1 gifigi4

12

