DS310 INSTALLATION AND ACCEPTANCE

(INTRODUCTION)

I. INSTALLATION
 A. UNPACKING
 B. CABLEING
 C. SWITCH SETTINGS
 D. INITIALIZING
 1-2
 1-8

II. ACCEPTANCE
 2-1

III. DIAGNOSTICS
 3-1
 A. DEC/X8
 B. LOW-LEVEL DIAGNOSTICS

IV. DOCUMENTATION LIST
 4-1
 A. PRINTS
 B. MAINDEC LISTINGS

V. SPARES KITS-BREAKDOWN
 5-1
 A. PDP8/A
 B. RX01
 C. VT50H
 5-2

VI. TROUBLE-SHOOTING
 6-1
 A. NO CHARACTERS
 B. "Ø" ONLY
 C. "Ø1" ONLY
 D. "Ø12" ONLY
 E. "Ø123" BUT NO BOOT
 6-2

VII. SITE PREPARATION NOTES
 7-1
INTRODUCTION

This document is designed to aid the Field Service technician in installing, accepting, maintaining, and troubleshooting the DS310.

The DS310 is a 12-Bit, Turnkey System in a desk. The basic system is a PDP8/A with 8K of core, and option 1 and 2 boards. An RX01 dual floppy disk drive is the mass storage device, and the VT50H, with direct cursor addressing, is used for a terminal. Many DS310's have the optional LA36RO (receive only) for hard copy capabilities. A second RX01 which fits in the desk is also optional.

DEVICE CODES
VT50H (option 1 bd) 03-04
LA36RO (KL8-J) 66
RX01 (RX8/E) 75
RX01 (RX8/E) (second drive) 76

The 8/A used in the DS310 does not have a front panel. However, the 8/A spares kit does contain one, for troubleshooting capabilities. Also, an 8/M front panel can be used (Ref. PDP8/A-TT-1).
I. INSTALLATION

A. UNPACKING
Before unpacking the DS310, move all the crates into the area reserved for the system. Remove the cardboard top and one wooden end bracket from the desk unit; carefully slide the unit off the shipping pallet, unpack the VT50H and place it on top of the desk. Unpack the LA36RO (if you have one). Mount casters and rollers. Remove head restraint on LA36RO.

B. CABLING
After you have uncrated the DS310, the VT50H, and the printer (if you have one), they must be cabled together.

The VT50H cables feed through a hole in the top of the desk. Remove the back of the desk. If you have a printer, you will find two labeled MATE-N-LOK connectors. Plug each device into the appropriate connector. Check the option 1 board (M8316) to make sure the VT50H cable is securely plugged in. Also check the cable for the boot panel on the Option 1 bd. (See figure 1). Also check the KL8-J (M8659 to be sure the LA36 cable is seated. Plug the VT50H and LA36 power AC cables into the 861 power control in the desk.

NOTE
If you have a printer other than the LA36RO, AC power for it must come from a separate circuit. Don't plug any other printer into the 861.

Check the RX01/RX8/E cables for security at the RX8/E (M8357) and also inside the RX01. You must remove a holding bracket at the back of the desk in order to slide the RX01 out. The small cables inside the RX01 should all be plugged in securely. If any are unplugged, they are keyed so that the right plug only goes on to the right jack.

FIG. 1 - OPTION A CABLEING
DS310 SWITCH ASSIGNMENTS
M8316 COMPONENT SIDE
SK35-AA I/O OPTION BOARD
DS310 SWITCH ASSIGNMENTS

M8317 < COMPONENT SIDE >

KME-45 EXTENDED OPTION BOARD

ROM START ADDRESS = 004
DS310 SWITCH ASSIGNMENTS

M3357 <COMPONENT SIDE>

RX5E FLOPPY INTERFACE

<DEVICE CODE = 75>
<table>
<thead>
<tr>
<th>MODULE</th>
<th>CONTACT NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCH</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
</tbody>
</table>

M8315

S1 OFF OFF OFF OFF OFF OFF ON ON[
CPU MODULE

M8316

S1 ON ON ON ON ON ON OFF[
OPTION #1

M8317

S1 ON OFF ON OFF OFF OFF ON[
OPTION #2
S2 OFF OFF OFF OFF ON ON ON[

M8357

S1 OFF ON OFF ON OFF ON OFF OFF[
RX8E (75)
OFF OFF ON ON OFF OFF OFF[
(76)

M8655

S1 OFF OFF ON ON OFF ON OFF[
KL8J
S2 OFF ON ON OFF ON OFF ON ON[

DS310 SWITCH SUMMARY
<table>
<thead>
<tr>
<th></th>
<th>CPU Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ME315</td>
</tr>
<tr>
<td>2</td>
<td>ME316 I/O Option Board (VT50)</td>
</tr>
<tr>
<td>3</td>
<td>ME317 Extended Option Board</td>
</tr>
<tr>
<td>4</td>
<td>*MM8-AA FIRST MEMORY MODULE</td>
</tr>
<tr>
<td>5</td>
<td>*MM8-AA SECOND MEMORY MODULE</td>
</tr>
<tr>
<td>6</td>
<td>**</td>
</tr>
<tr>
<td>7</td>
<td>**</td>
</tr>
<tr>
<td>8</td>
<td>M8357 RX8 INTERFACE (RX01)</td>
</tr>
</tbody>
</table>

* 8K = FIELDS 8-1 MMB-AA
 16K = FIELDS 8-3 MMB-AB
* 8K = FIELDS 2-3 MMB-AA
 16K = FIELDS 4-7 MMB-AB

** Additional Memory Module could be inserted in slots 8-9
D. INITIALIZING

After you have checked all the cables and switch settings, and have inspected the system for damage, apply power to the 861 power control.

Now press the power button on the front of the deck. All system components should receive power; look for a cursor on the VT50H.

Before inserting any diskettes, press the start button on the desk front. You should hear the RX01 clicking, and the numbers "0123" should appear on the VT50H screen. If not, turn to section VI, Troubleshooting.

If "0123" does appear, insert the COS software diskette into drive 0. Press any character on the VT50H keyboard; the RX01 should click and

"COS MONITOR V5.05"
DATE?

should appear on the screen. If it does, turn to section II, Acceptance.

If the COS monitor message does not appear, turn to Section VI-E.
I. INITIALIZING THE SYSTEM

Insert the COS 316 software diskette in RX0 and press the START switch.

> 1 2 3 should appear on the scope.

Press the 'S' key.

After a few seconds, the following should appear on the screen:

COS Monitor 5.05 (or current version)
DATE?
Now enter the date in the following format:

• DA MM-DD-YY 〈CR〉

The monitor will now re-display its version message:

COS 300 MONITOR 5.05

II. SYSTEM SOFTWARE BACKUP

Insert a new scratch diskette in RX1 and copy the Systems diskette with the following command sequence:

R RXU 〈CR〉

The program will identify itself as:

DISKETTE UTILITY V5.04
OPTION -

Now enter 'C' (for copy and verify) and 〈CR〉

INPUT -

Enter 0 and 〈CR〉

OUTPUT -

Enter 1 and 〈CR〉

This will take about 3 minutes. Then remove the diskette from RX0 and store in a safe place. This is the system backup. Insert the diskette from RX1 into RX0, press START and enter the date as before.

III. INSTALLING THE SYSTEM SOFTWARE OPTIONS
To install the correct system handlers type:

R SYSGEN/C

The program will respond with:

Do you want to change the system device? (answer NO and <CR>).

Now provide the appropriate answers to all other questions.

IV. RUNNING THE DIBOL TEST PROGRAMS

A. Compile and save the test programs as follows:

R COMP, TRMTST/N <CR>
SA TRMTST <CR>
R COMP, LPTEST/N <CR>
SA LPTEST <CR>

If a printer is present, put it on-line and compile the disk exerciser with a listing as shown:

R COMP, FLOPXX <CR>
(R COMP, FLOPXX/N if no printer is available)
Wait for the listing to complete then type:

SA FLOPXX <CR>

B. Run the terminal (VT50) test by typing:

R TRMTST <CR>

Type CTRL/C to terminate the test. Run this test for about 5 minutes.

C. If a printer is available run the printer test as follows:

R LPTEST <CR>

Type CTRL/C to terminate. Run this test for about 5 minutes.

D. Running the disk test.

Set up the "logical units" table by typing the following data:

R SYSGEN/T <CR>
RX@, 7 <CR>
RXL, 41 <CR>
D. RX2, 41} Enter this even if RX2, RX3 do not
CTRL/Z exist.

If a printer exists, the new table can be dis-
played by typing:

R SYSGEN/L 〈CR〉

and the following data should be printed:

<table>
<thead>
<tr>
<th>LOGICAL</th>
<th>DEVICE</th>
<th>LENGTH</th>
<th>SYSGEN V5.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT #</td>
<td>NAME</td>
<td>(SEGMENTS)</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>RX0</td>
<td>0007</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>RX1</td>
<td>0041</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>RX2</td>
<td>0041</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>RX3</td>
<td>0041</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>UNDEFINED</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>UNDEFINED</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Now run the test by typing:

R FLOPXX 〈CR〉

The program will respond with:

*** DIBOL DISK EXERCISER ***

ENTER DISK #
(enter 0-3 and 〈CR〉)

ENTER # OF PASSES
(type a number between 1 and 999 and 〈CR〉. Each
pass takes about 45 min. Max. depending on how
the next question is answered).

RECORDS TO SKIP?
(enter a number between 0 and 600 and 〈CR〉. This
is used in the oscillating read/write subtest to
determine which records to access. The larger
the number entered, the shorter the run time).

NOTE: DO NOT REMOVE THE SOFTWARE DISKETTE FROM
RXØ. INSERT A SCRATCH DISKETTE IN ANY OTHER
DRIVE TO BE TESTED.

OUTPUT ERRORS TO PRINTER, Y OR N?

Enter Y or N.

If old data is present in the disk area used by
the program, then the following monitor message
may appear:

REPLACE XXXXXX #NN?
D. Answer YES and 〈CR〉

As each pass is completed, the program will type:

PASS X OF Y

When all passes have been completed then the program will type:

*** EXERCISER COMPLETED ***

Error Messages:
All hardware detectable errors will be trapped by the monitor and displayed as:

I/O ERROR ON RX#; RETRY?
(Answer Y to retry N, to abort the program)

If the wrong records are being accessed, (positioner problem) then the program will type the following error message:

DISK ACCESS ERROR
RECORD # READ _____ RECORD # EXPECTED _____
for each error encountered.

NOTE: If drive 0 is being tested, the program will terminate much sooner due to the reduced data space available. For all other drives the entire diskette surface is tested.

Run this test for one pass on drive 0 and about 15 minutes each for all other drives.

To re-run this program type:
R FLOPXX 〈CR〉

There is no need to re-enter the logical Units Table.

Software Note:

The COS310 Monitor will only display the message I/O ERROR on RX#, RETRY? after 10 consecutive errors on the same operation.

The utility program RXU will report every error encountered and as a result some number of errors should be expected when running RXU. Data Compare errors, however, should be considered a hard error since this indicates the copied version does not match the original.
III. DIAGNOSTICS

A. DEC/X8

There are two DEC/X8 configurations on the diagnostic diskette. They are pre-initialized, and to run them you boot the diagnostic diskette and type "R DECXA" or "R DECXC". This will put you in the DECX monitor, responding with "!"

Type "AR" to run all jobs, RJnn to run a particular job, or "S" to get a status report. DEC/X8 for the DS310 is run the same way as DEC/X8 for any 8/E system. Type "^R" or "^E" to start, "^C" to stop.

DECXA is a minimum configuration X8; while DECXC is a customized configuration.

B. LOW-LEVEL DIAGNOSTICS

The diagnostics for the DS310 have been modified to run without a front panel. This means that halts have been removed, and the "switch register" is loaded from the VT50H.

The "R" (run) command is used to call the diagnostics, ex. "R DJKKB". Each diagnostic is called by its maindec name.

After a diagnostic loads, it requests a switch register setting, "SR = 0000 ". Most diagnostics for the DS310 require only one SR setting. Later in this section you will find individual SR options for each diagnostic.

At the end of a pass, one to five minutes, the diagnostic will print "maindec name PASS XXXX", with XXXX representing the number of passes.

Error messages are in this form:
"maindec name FAILED - PC :AAAA AC:BBBB MQ:CCCC FL:DDDD"

AAAA = program counter at failure time
B BBBB = accumulator
CCCC = MQ Register
DDDD = LINK - Bit 0
GREATER THAN FLAG - Bit 1
INT REQUEST LINE - Bit 2
INT INHIBIT - Bit 3
B. LOW-LEVEL DIAGNOSTICS (cont.)

$\text{DDDD} = \text{INT ENABLE} \quad -\text{Bit 4}$
$\text{USER FLAG} \quad -\text{Bit 5}$
$\text{INSTRUCTION FIELD} \quad -\text{Bit 6, 7 and 8}$
$\text{DATA FIELD} \quad -\text{Bit 9, 10 and 11}$

This is to aid you in determining the type of error from the MainDec listings.

There are several control characters which can be used on the DS310 diagnostics.

C - RETURN TO MONITOR
D - SET UP S.R. AND CONTINUE
E - CONTINUE FROM "WAITING"
$^*^L$ - OUTPUT ERRORS TO LINE PRINTER
Q - CONTINUE OUTPUT TO VT50H (used with S)
S - STOP OUTPUT TO VT50H
R - RESTART DIAGNOSTIC

*This option is not available on floppy diagnostic, DIRXA and DIRXB.

The following SR settings are common to many DS310 processor tests.

SR0 = 1 \hspace{1cm} \text{INHIBIT ERROR "WAITING"}
SR1 = 1 \hspace{1cm} \text{LOOP ON ERROR}
SR2 = 1 \hspace{1cm} \text{LOOP IN TEST}
SR3 = 1 \hspace{1cm} \text{"HALT" AT END OF PASS (WAITING)}

Following are the SR settings for each individual MainDec.

DJKKB - 8/A CPU TEST

The SR settings for this test are only the common ones listed above. However, when you start the test, you will get an error message immediately. Look for the PC = 221, the AC = 7777 and the link = 1. Press E to continue.

DJEXC - 4-32K PROCESSOR EXERCISER

SR0 = 1 \hspace{1cm} \text{INHIBIT ERROR "WAITING"}
SR1 = 1 \hspace{1cm} \text{LOOP ON TEST}
SR2 = 1 \hspace{1cm} \text{INHIBIT RELOCATION}
SR3 = 1 \hspace{1cm} \text{"WAITING" AT END OF PASS}

DJCLA - OPTION 1 AND 2 TEST

SR0-4 STANDARD
SR7-11 MEMORY SIZE
$0 = 1K$, $7 = 8K$, $17 = 16K$, $27 = 24K$, $37 = 32K$
DHKMA - EXTENDED MEMORY CHECKBOARD

SR0 = 1 - "WAITING" AFTER ERROR
SR1 = 1 - INHIBIT ERROR TYPEOUT
SR2 = 1 - RING BELL ON ERROR
SR3 = 1 - INHIBIT RELOCATION
SR4 = 1 - CHANGE FIELD LIMITS
SR5 = 1 - "WAITING" AT END OF THIS TEST
SR6-8 - LOWER FIELD LIMIT
SR9-11 - UPPER FIELD LIMIT

DHKMC - EXTENDED MEMORY ADDRESS TEST
SWITCHES ARE THE SAME AS DHKMA (EXTENDED MEMORY CHECKERBOARD).

DIRXA - RX01 DIAGNOSTIC
There are two SR settings in this diagnostic.
The program first prints-
"Select parameters (including device code)"
SR0 and 1 - 00 = both drives if ready
 01 = drive 1 only
 10 = drive 0 only
 11 = both 0 and 1
SR2 = 1 - RX8-RX01 cable is unplugged (RX8/E testing)
SR3-5 - 5 for device code 75 (drives 0 and 1)
 6 for device code 76 (drives 2 and 3)
SR7-11 - test selection (zeroes for all tests)

The second SR setting follows
SR0 = 1 - "WAITING" AFTER ERROR
SR1 = 1 - "WAITING" AT END OF PASS
SR2 = 1 - LONG ERROR PRINTOUT (data comparison)
SR3 = 1 - INHIBIT ERROR PRINTOUTS
SR4 = 1 - LOOP ON ERROR
SR5 = 1 - LOOP ON TEST
SR6 = 1 - INHIBIT "INIT" AT ERROR
SR11 = 1 - DISABLE BELL ON ERROR

ERROR MESSAGES FOR DIRXA

Error messages for DIRXA and DIRXB are the same. For a detailed explanation, see pages following.

DIRXB - RX01 Reliability
There are 4 SR settings necessary to start this test.
1st SR - DEVICE CODE
 0750 for drives 0 and 1
 0760 for drives 2 and 3
or 2nd SR setting - Drives to be tested

SR0 and 1 - 00 - TEST ALL READY DRIVES
 10 - TEST DRIVE 0
 01 - TEST DRIVE 1
 11 - TEST 0 and 1
3rd SR settings - parameters

SR 0,1,2
 0 = PATTERN
 0 = RANDOM

SR 3,4,5
 0 = TEST SELECTION
 0 = ALL

SR 6,7,8
 0 = ACTUATOR SEQUENCE
 0 = RANDOM

SR 9 = 1
 8-BIT MODE (normal)
 0 = 12-BIT MODE

SR 10 = 1
 DELETED DATA (normally 0)

SR 11 = 1
 BASE 8 TRACK AND SECTOR #
 0 = BASE 10 AND TRACK SECTOR #

4th SR setting - RUN PARAMETERS

SR0 = 1
 - "WAITING" ON ERROR

SR1 = 1
 - "WAITING" AT END OF PASS

SR2 = 1
 - LONG ERRIR PRINTOUT

SR3 = 1
 - INHIBIT ERROR PRINTOUT

SR4 = 1
 - INHIBIT ERROR RECOVERY ATTEMPTS

SR5 = 1
 - INHIBIT BELL ON ERROR

SR6 = 1
 - INHIBIT INIT ON ERROR

DILAB - IA36 DIAGNOSTIC

SRØ = 1
 - CONTINUE ON ERROR

SR1 = 1
 - HALT AT END OF TEST

SR2 = 1
 - LOOP ON TEST

SR3 = 1
 - RUN TEST ONCE AND HALT

SR4 = 1
 - KBD CONTROL

SR6-11
 - TEST SELECTION

NORMALLY ENTER 0200. THE DIAGNOSTIC WILL LOOP THROUGH TESTS 00-12. HALT WITH ^C.
ERROR DETECTION FOR DIRXA AND DIRXB

WRITE ERROR

A write error is a read error if the data being read is of unknown quality (the data being read is being read for the first time after its writing).

READ (CRC) ERROR - (TRANSFER REGISTER STATUS BIT 11 = 1)

A read error is a read error where the quality of the data being read is known (the data being read had been read successfully some time previously).

CRC AND DATA ERROR
NO CRC BUT DATA ERROR
CRC BUT NO DATA ERROR

These data errors are detected when the program is verifying the data that "should have been read" with the data that "actually was read" by comparing the "bad" column to the "good" column.

<table>
<thead>
<tr>
<th>WORD#</th>
<th>GOOD</th>
<th>BAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(TRACK IDENTIFICATION BITS 5-11)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(SECTOR IDENTIFICATION BITS 8-11)</td>
<td></td>
</tr>
</tbody>
</table>

WORDS 3 THRU 62 (IF 12-BIT MODE), OR
BYTES 3 THRU 126 (IF 8-BIT MODE) CONTAIN
THE OPERATORS PPP SELECTION.

63 (OR BYTE 127) - THE SUM OF ALL WORDS 1 THRU 62
OR BYTES 1 THRU 127.

64 OR (BYTE 128) - THE NEGATIVE OF 2 TIMES THE
VALUE OF WORD # 63 OR BYTE # 127.

SUMCHECK ERROR

The program detects a "SUM-CHECK" error by summing all the actual (bad) data column and comparing that sum to Ø.

The reason for the first 2 words/bytes containing track/sector identification codes is to detect addressing errors.

The reason for the last 2 words/bytes containing checksum information is to distinguish between what might resemble an addressing error (if the program detected an error when comparing the first 2 words/bytes) and a CRC error.
SEEK ERROR - (NO ALLOCATED TRANSFER REGISTER STATUS BIT)

A seek error has been defined as "not a CRC", and "not a parity" error.

PARITY ERROR - (TRANSFER REGISTER STATUS BIT 1Ø = 1)

A parity error is an error which results from an incorrect transfer of the command word from the RXB interface to the RXØ1 microprocessor control.

The following chart represents an overview of which errors may be detected in which test:

<table>
<thead>
<tr>
<th>TEST:</th>
<th>WRITE</th>
<th>READ</th>
<th>DATA</th>
<th>SEEK</th>
<th>PARITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

DEFINITIVE ERROR CODES

The RXØ1 microcontroller has defined error codes and meanings which are available to the program by issuing command #7 to "read the B-code".

A definitive error code represents (where) within a micro-function the error was detected.

The following are the definitive error codes and meanings:

0 - NO ERROR
1Ø - DRIVE Ø FAILED TO SEE HOME FROM INITIALIZE
2Ø - DRIVE 1 FAILED TO SEE HOME FROM INITIALIZE
3Ø - HOME FOUND WHEN STEPPING OUT 1Ø TRACKS FROM INIT
4Ø - TRIED TO ACCESS A TRACK GREATER THAN 77(DEcimal)
5Ø - HOME WAS FOUND BEFORE DESIRED TRACK
6Ø - SELF DIAGNOSTIC ERROR
7Ø - DESIRED SECTOR NOT FOUND AFTER SAMPLING 52 HEADERS
1ØØ - WRITE PROTECT ERROR
11Ø - MORE THAN 4ØUS AND NO SEP CLOCK DETECTED
12Ø - A PREAMBLE COULD NOT BE FOUND
13Ø - PREAMBLE FOUND BUT NO ID MARK FOUND IN TIME
14Ø - CRC ERROR ON SUPPOSEDLY GOOD HEADER
15Ø - GOOD HEADER(NO CRC ERROR) BUT TRACK COMPARE ERROR
16Ø - IDAM NOT FOUND IN TIME
17Ø - DATA AM NOT FOUND IN TIME
2ØØ - DATA CRC ERROR
21Ø - ALL PARITY ERRORS
EXPECTED OR MISSING ERROR CONDITIONS

MISSING DD MARK

This error may occur when the program expected a deleted data mark but none occurred.

EXPECTED DD MARK

This error may occur when the program had not expected a deleted data mark but one occurred.

MISSING ERROR FLAG

This error may occur when the contents of the transfer register at done time are not \(\emptyset \), and the error flag is cleared.

EXPECTED RX\(\emptyset \)l IRQ

This error may occur when the program has not yet enabled the RXB interrupt enable flip-flop but an interrupt occurred.

DEVICE TEST HUNG

This error may occur when the program expects but failed to receive a program interrupt request from the RX\(\emptyset \)l subsystem within an allotted period of time (approximately 4 seconds).

UNKNOWN IRQ

This error may occur when the program has failed to identify the device issuing a program interrupt request.

ERROR REPORTING

All errors detected will be reported if AC SW 3 = \(\emptyset \). The following information is printed for all errors detected. The header line is only printed for the first error detected within each test pass.

<table>
<thead>
<tr>
<th>CMND</th>
<th>XDR</th>
<th>CODE</th>
<th>RSTA</th>
<th>START</th>
<th>TARGET</th>
<th>TEST</th>
<th>PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMND</td>
<td>-</td>
<td>COMMAND TO THE RX(\emptyset)l MICROCONTROLLER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XDR</td>
<td>-</td>
<td>CONTENTS OF THE TRANSFER REGISTER AT ERROR/DONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CODE</td>
<td>-</td>
<td>DEFINITIVE ERROR CODE (VIA COMMAND #7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSTA</td>
<td>-</td>
<td>STATUS (VIA COMMAND #5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>START</td>
<td>-</td>
<td>STARTING TRACK/SECTOR ACTUATOR POSITION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TARGET</td>
<td>-</td>
<td>TARGET TRACK/SECTOR ACTUATOR POSITION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST</td>
<td>-</td>
<td>TEST PARAMETERS SELECTED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PASS</td>
<td>-</td>
<td>PASS # AT ERROR (TO 16777215 DECIMAL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLES

KEY INITIALIZE ERROR

<table>
<thead>
<tr>
<th>CMND</th>
<th>XDR</th>
<th>CODE</th>
<th>RSTA</th>
<th>START</th>
<th>TARGET</th>
<th>TEST(X)</th>
<th>PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY</td>
<td>ø1ø0</td>
<td>ø12ø</td>
<td>ø2ø0</td>
<td>KEY</td>
<td>(HOME)</td>
<td>KEY</td>
<td></td>
</tr>
</tbody>
</table>

Starting the program had produced a console (key) initialize, and the RXø1 control was unable to find the (home) position on drive ø.

<table>
<thead>
<tr>
<th>CMND</th>
<th>XDR</th>
<th>CODE</th>
<th>RSTA</th>
<th>START</th>
<th>TARGET</th>
<th>TEST(X)</th>
<th>PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONSOLE (KEY) INIT</td>
<td>DELETED DATA MARK HAP</td>
<td>PREAMBLE COULD NOT</td>
<td>FIND</td>
<td>DISKETTE DRIVE IS</td>
<td>ACTUATOR POSITION</td>
<td>(HOME) TRACK 1, SECTOR 1</td>
</tr>
<tr>
<td></td>
<td>INIT</td>
<td>(HOME)</td>
<td>(HOME)</td>
<td></td>
<td>(HOME)</td>
<td>(HOME)</td>
<td></td>
</tr>
</tbody>
</table>

SEEK ERROR

<table>
<thead>
<tr>
<th>CMND</th>
<th>XDR</th>
<th>CODE</th>
<th>RSTA</th>
<th>START</th>
<th>TARGET</th>
<th>TEST(X)</th>
<th>PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ø1ø4</td>
<td>ø1ø0</td>
<td>ø12ø</td>
<td>ø3ø0</td>
<td>(HOME)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>INIT</td>
<td>ø</td>
<td>ø12ø</td>
<td>ø2ø0</td>
<td>(HOME)</td>
<td>(HOME)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A seek error occurred while trying to "write deleted data" (CMND #14) onto track 1 sector 1.

<table>
<thead>
<tr>
<th>CMND</th>
<th>XDR</th>
<th>CODE</th>
<th>RSTA</th>
<th>START</th>
<th>TARGET</th>
<th>TEST(X)</th>
<th>PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WRITE DELETED DATA</td>
<td>DELETED DATA MARK</td>
<td>PREAMBLE COULD NOT FIND</td>
<td>DRIVE READY + DELETED DATA</td>
<td>HOME POSITION</td>
<td>TRACK 1, SECTOR 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ø</td>
<td>ø1ø0</td>
<td>ø2ø0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Then the program issued an initialize at an attempt to recover from the "seek error".

<table>
<thead>
<tr>
<th>CMND</th>
<th>XDR</th>
<th>CODE</th>
<th>RSTA</th>
<th>START</th>
<th>TARGET</th>
<th>TEST(X)</th>
<th>PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEANS IOT 67X7 WAS ISSUED (INIT)</td>
<td>ø1ø0</td>
<td>ø2ø0</td>
<td>1ø0ø,3ø0</td>
<td>1ø0ø,1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WRITE-CRC AND DATA ERROR

<table>
<thead>
<tr>
<th>CMND</th>
<th>XDR</th>
<th>CODE</th>
<th>RSTA</th>
<th>START</th>
<th>TARGET</th>
<th>TEST(X)</th>
<th>PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>øø26</td>
<td>øø1ø</td>
<td>3øø0</td>
<td>ø2ø1</td>
<td>1øø0,3ø0</td>
<td>1øø0,1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WRITE-CRC AND DATA ERROR

<table>
<thead>
<tr>
<th>WORD</th>
<th>GOOD</th>
<th>BAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5435</td>
<td>5473</td>
</tr>
<tr>
<td>5</td>
<td>6617</td>
<td>5437</td>
</tr>
<tr>
<td>6</td>
<td>63ø3</td>
<td>46ø6</td>
</tr>
</tbody>
</table>

SUMCHECK IS 1253
TOTAL BAD=60
While reading sector 7 of track 100 the program detected a CRC error.

The program expands the standard error format to include data comparison information if the test is a data comparison test.

If AC switch 2 = 1 then a (long) data comparison printout would have occurred of (all) the words/bytes in error.

The word "write" within the expansion means that the data of sector 7 had never been read before, therefore the program assumed it was written incorrectly.

```
READ-CRC AND DATA ERROR
CMND  XDR  CODE  RSTA  START  TARGET  TEST(X)  PASS
0026  0001  0200  0201  100,30  100,1
READ-CRC AND DATA ERROR
WORD  GOOD  BAD
4    5435  5477
5    6617  5437
6    6303  5406
SUM-CHECK IN 1257
TOTAL BAD=60
```

While seeking sector 1 of track 100 the program detected a CRC error.

The program expands the standard error format to include data comparison information if the test is a data comparison test.

If AC switch 2 = 1 then a (long) data comparison error printout would have occurred of (all) the words/bytes in error.

The word "read" within the expansion means that the data of sector 7 had been read some time previously. Therefore the program assumes that the data was written correctly but read incorrectly.

```
WRITE-CRC BUT NO DATA ERROR
CMND  XDR  CODE  RSTA  START  TARGET  TEST(X)  PASS
0026  0001  0200  0201  100,30  100,1
WRITE - CRC BUT NO DATA ERROR
```

A CRC error was detected after reading sector 1 of track 100.

The word "write" within the data expansion means that the data of sector 1 track 100 had never been read before therefore the program assumed it was written incorrectly, and because the program did not detect a data comparison error, it assumed that the 2 CRC characters were written incorrectly.
ERROR RECOVERY

The program will attempt to retry all erroring functions 10 times. A recoverable error (soft) is one which disappears within 10 program retries. An unrecoverable error (hard) is one which remains after 10 program retries.

The program will issue IQT 67X7 (INIT) for all errors but definitive error codes 140, 200, and 210.

140 - CRC ERROR ON SUPPOSEDLY GOOD HEADER
200 - DATA CRC ERROR
210 - PARITY ERROR

These errors are (not) seek type actuator related errors. If a hard write error is detected the program aborts further testing this pass of that track/sector but continues testing tracks, on the remaining.

A sympathetic hard read error may occur (pattern dependent) if the hard write error had occurred within a test which would eventually read that sector and a sympathetic hard data comparison error may occur if that test was to verify the data to a known pattern.

FATAL ERROR RECOVERY

If the program detects any of the succeeding fatal error conditions, the programs recovery will be that of an automatic restart.

The program will automatically dump all statistical information accumulated issue an (INIT) and effectively restart itself from restart address 201.

(A) HARD PARITY ERROR
(B) A SELECTED DRIVE BECOMING NOT READY
(C) NO EXPECTED RX01 INTERRUPT REQUEST
(D) MISSING ERROR FLAG
(E) LOG OVERFLOW
(F) DEVICE TEST HUNG
IV. DOCUMENTATION LIST

A. PRINTS

Prints for the DS310 are available as a set from microographics, called MPCL8. Also available are:

8A500
RX01 - M7726, M7727, M8357, 54-11398, H771
LA36
KL8J
DP8E
KG8E

B. MAINDEC LISTINGS

Maindec listings for the CL8 diagnostic package are available from SDC as ZF-008-RZ. These include:

DIRXBB - Floppy reliability
DJEXCA - 4-32K processor exerciser
DHVTDB - VT50 diagnostic
DJKKBA - 8/A CPU test
DHCMA - card reader test
DHKGA - KG8E test
DIRXAB - floppy diagnostic
DHDPB - DP8E test
DHKMCAB - extended memory address
DJCLAA - Option 1 + 2 test
DILPAC - LP02 diagnostic
DILPEB - LP05 diagnostic
DILSAC - LS01 test
DHKMAC - extended memory checkerboard
DILABC - LA36 test
V. SPARES KITS

PDP 8A CORE SPARES KIT

<table>
<thead>
<tr>
<th>QTY</th>
<th>PART #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>BC08R-01</td>
<td>CABLE</td>
</tr>
<tr>
<td>1</td>
<td>BC08R-10</td>
<td>CABLE</td>
</tr>
<tr>
<td>1</td>
<td>G8018</td>
<td>REGULATOR</td>
</tr>
<tr>
<td>1</td>
<td>M8315</td>
<td>PROCESSOR BD.</td>
</tr>
<tr>
<td>1</td>
<td>M8316</td>
<td>OPT. 1 BD.</td>
</tr>
<tr>
<td>1</td>
<td>M8317</td>
<td>OPT. 2 BD.</td>
</tr>
<tr>
<td>1</td>
<td>MM8-AA</td>
<td>8K MEMORY</td>
</tr>
<tr>
<td>1</td>
<td>MM8-AB</td>
<td>16 K MEMORY</td>
</tr>
<tr>
<td>1</td>
<td>70-10644</td>
<td>MODULE CARRIER</td>
</tr>
<tr>
<td>1</td>
<td>70-10705</td>
<td>MODULE CASE</td>
</tr>
<tr>
<td>1</td>
<td>70-10866</td>
<td>DISK ARRAY</td>
</tr>
<tr>
<td>1</td>
<td>29-22018</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>90-07207</td>
<td>FUSE</td>
</tr>
<tr>
<td>5</td>
<td>90-07219</td>
<td>FUSE</td>
</tr>
<tr>
<td>5</td>
<td>90-08387</td>
<td>FUSE</td>
</tr>
<tr>
<td>5</td>
<td>90-09697</td>
<td>FUSE</td>
</tr>
<tr>
<td>5</td>
<td>90-09698</td>
<td>FUSE</td>
</tr>
<tr>
<td>5</td>
<td>90-09699</td>
<td>FUSE</td>
</tr>
</tbody>
</table>
RX8/RX11 SERVICE KIT (60Hz)

<table>
<thead>
<tr>
<th>QTY</th>
<th>PART #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M7726</td>
<td>FLOPPY CONTROLLER</td>
</tr>
<tr>
<td>1</td>
<td>M7727</td>
<td>R/W MODULE</td>
</tr>
<tr>
<td>1</td>
<td>M7846</td>
<td>RX11 INTERFACE</td>
</tr>
<tr>
<td>1</td>
<td>M8357</td>
<td>RX8E INTERFACE</td>
</tr>
<tr>
<td>1</td>
<td>W130</td>
<td>KM11 DRIVER</td>
</tr>
<tr>
<td>1</td>
<td>W131</td>
<td>KM11 LIGHTS</td>
</tr>
<tr>
<td>1</td>
<td>30-12304</td>
<td>FLOPPY DRIVE</td>
</tr>
<tr>
<td>1</td>
<td>70-10718</td>
<td>H771 REGULATOR</td>
</tr>
<tr>
<td>1</td>
<td>22-00007</td>
<td>CLEANING PADDLE</td>
</tr>
<tr>
<td>1</td>
<td>29-21888</td>
<td>CASE</td>
</tr>
<tr>
<td>1</td>
<td>36-12408</td>
<td>DISKETTE</td>
</tr>
</tbody>
</table>

VT50H SPARES KIT

<table>
<thead>
<tr>
<th>QTY</th>
<th>PART #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54-10886-01</td>
<td>MONITOR/POWER BD.</td>
</tr>
<tr>
<td>1</td>
<td>54-10902-03</td>
<td>MICROPROCESSOR</td>
</tr>
<tr>
<td>1</td>
<td>54-10906-01</td>
<td>MICROPROCESSOR</td>
</tr>
<tr>
<td>1</td>
<td>54-11170-03</td>
<td>KEYBOARD</td>
</tr>
</tbody>
</table>
VI. TROUBLESHOOTING

You are in this section because "0123" did not appear on the screen when you pressed start. These characters are printed as part of the ROM bootstrap program, and each one is significant.

\[
\begin{align*}
0 & - \text{VT50H check passed} \\
1 & - 8/A test passed \\
2 & - \text{Memory test passed} \\
3 & - \text{Floppy test passed}
\end{align*}
\]

The bootstrap ROM, on the option 2 board, actually contains a mini-diagnostic, and if all four characters don't print, one of the tests failed. This section is broken down according to what did or didn't print.

A. Nothing printed at all.

* If the RX01 didn't click, try the boot switch on the 8/A bootstrap panel (inside the desk back cover). If it still doesn't click, you are not generating the initialize signal. Check the cable from the boot panel to the Option 1 board (M8316).

* If the RX01 did click, but no characters appeared, check the VT50H off-line. Look on the bottom of the VT50H for directions. Now check the baud rate on the VT50H, and recheck the baud rate on the M8316. Also recheck the switches on the M8317. Check the cable between the M8316 and the VT50H. Check the power supply voltages for the 8/A (see fig.2). If these things all check out, you probably have either a bad M8316, M8317, or ROM chips on the M8317.

B. Only "0" printed.

MAKE sure the M8315 (Processor) is securely seated. You have a problem either here or with the ROMs on the M8317. Check the processor voltages (Fig2).

C. Only "01" printed

You have a problem either with memory or the M8317 ROMs. Check processor voltages (Fig.2).

POWER SUPPLY VOLTAGES - PDP8A - FIGURE 2.

<table>
<thead>
<tr>
<th>VALUE</th>
<th>PIN</th>
<th>ADJUSTMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V</td>
<td>AA2, BA2, CA2</td>
<td>G8018 + 5VADJ.</td>
</tr>
<tr>
<td>+20V</td>
<td>EA2</td>
<td>G8018 + 20VADJ.</td>
</tr>
<tr>
<td>+15V</td>
<td>DA2</td>
<td>NONE</td>
</tr>
<tr>
<td>-15V</td>
<td>DB2</td>
<td>NONE</td>
</tr>
<tr>
<td>-5V</td>
<td>EM2</td>
<td>NONE</td>
</tr>
</tbody>
</table>

MEASURE VOLTAGES IN OMNIBUS SLOT CLOSEST TO THE G8018
IV. TROUBLESHOOTING

D. Only "012" printed

You have a problem with the floppies. Did the RX01 click when you pressed start? If not, check the cabling to the RX01. If they did, recheck the RX8/E device code. Also check the processor voltages. See figure 2.

E. "0123" appeared, but the system didn't boot when you hit a character.

If that character was not echoed, you have a VT50H or M8316 problem. Check the baud rates on the VT50H and the M8316. Check the VT50H off-line (see bottom of unit for directions). Check the cable between the VT50H and the M8316.

If the character was displayed, but the system didn't boot, press the start button again. After "0123" appears, again strike any character. If the diskette still does not boot, but the drives click, remove the COS diskette and reboot with the diagnostic floppy. The diagnostic diskette should display a "." If it does, you probably have a bad COS diskette. Turn to Section III, and run DEC/X8.

If the diagnostic diskette doesn't boot, remove it from drive 0 and put it in drive 1. Now try to boot again. If it comes up, you have a problem in drive 0. If not, you have a problem either with the RX01 controller, the RX8/E interface, or the Option 2 board (M8317). Recheck the switch settings on the RX8/E and the M8317.
The DEC DATA SYSTEM 310 is a stand-alone disk-based business system. It consists of a PDP-8A processor, a VT50 DECscope, and an RX01 floppy disk drive, all contained in a single desk unit. An optional line printer stands separate from the system.

SPACE REQUIREMENTS: The basic system is in a desk 48" x 30". This requires an area 4.5 ft. by 6 ft. to allow operator room. The optional line printer should be placed immediately to the right or left of the desk, requiring another three feet in width. This is a total area of 7.5 ft. by 6 ft.

ENVIRONMENTAL REQUIREMENTS: Room temperature can be 59° to 90°F; 65° to 75° is recommended. Humidity can range from 20% to 80%; 40% to 60% is recommended. The basic system generates 1700 BTU per hour; with LA36R0, 2700 BTU per hour; with LP05, 3500 BTU per hour.

POWER REQUIREMENTS: The DS310 plugs into a standard grounded wall plug. North American requirements are 115V, 60 Hz, single phase at 15A (NEMA5-15P connector). International requirements are 230V, 50 Hz, single phase at 15A (NEMA 6-15P connector). One plug is required for each system. The basic system uses 12A; with any printer besides the LA36R0 must have a separate power source.
TABLE OF CONTENTS

1. TABLE OF CONTENTS
2. SECTION 1. DS31f SYSTEMS
3. SECTION 2. OPTIONAL EQUIPMENT
4. SECTION 3. CPU BACKPLANE SLOT ASSIGNMENTS
5. SECTION 4. POWER SWITCH SETTINGS
6. SECTION 5. MODULE CONFIGURATIONS
7. SECTION 6. RX8 DRIVE UNIT DECALS
8. SECTION 7. AC POWER CABLE
ARRANGEMENT
GUIDELINES

1. **DS31f SYSTEMS**: The term DS31f refers to a series of small, desk-sized computer systems based on PDP-8 hardware. Each system includes the CO31f operating system which uses the DIBOL programming language.

 The basic hardware building block of a DS31f system is called the CLB and it consists of an 8A CPU, an RX8 dual-drive floppy disk and a VT50-II display, all mounted in an H982-W desk as illustrated below:

 ![Diagram of DS31f System Components]

 Optional equipment available for the DS31f includes extra memory, a choice of printers, an additional RX8 dual-drive unit and a 2780 communications subsystem.

 The two letter suffix appended to each option number denotes the type of memory, software, customer and input power as follows:

 DS31f - XX
 - A = 16KB, SOFTWARE SUPPORT
 - B = 16KB, LICENSE ONLY
 - C = 32KB, SOFTWARE SUPPORT
 - D = 32KB, LICENSE ONLY
 - A = END USER, 115V/60Hz
 - D = END USER, 230V/50Hz
 - B = OEM, 115V/60Hz
 - C = OEM, 230V/50Hz

 Refer to the current edition of the Digital Master Price List to determine which options are available for sale. Note that new options may be added or old options deleted as determined by the Business Product Group.
2. **OPTIONAL EQUIPMENT:** The basic DS318 occupies six of the twelve available module slots in the CPU backplane. Optional equipment may be selected from the list below up to a maximum of six additional module slots. The DS318 may not be expanded beyond the CPU backplane.

OPTIONAL EQUIPMENT

<table>
<thead>
<tr>
<th>TYPE</th>
<th>UNIT</th>
<th>REMARKS</th>
<th>BACKPLANE SLOTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY</td>
<td>MM8-AA</td>
<td>ONE ADDITIONAL MEMORY MODULE MAY BE ADDED TO THE BASIC SYSTEM. MAXIMUM MEMORY = 64K BYTES (TWO MM8-AB). SECOND MEMORY IS INSTALLED IN SLOTS 6&7.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>OR MM8-AB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLOPPY DISK</td>
<td>DS3RX-B</td>
<td>ONE ADDITIONAL FLOPPY DISK MAY BE INSTALLED IN THE LOWER HALF OF THE DESK PEDESTAL.</td>
<td>1</td>
</tr>
<tr>
<td>PRINTER</td>
<td>DS105</td>
<td>THE DS105 IS AN LA36 MODIFIED AS A PRINTER ONLY UNIT.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OR LS8-F</td>
<td>CENTRONICS PRINTER</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OR LS8-V</td>
<td>DATA PRODUCTS PRINTER (LP55)</td>
<td>1</td>
</tr>
<tr>
<td>278S CONN.</td>
<td>DP8-E</td>
<td>SYNCHRONOUS COMMUNICATIONS LINE AND HARDWARE CNC UNIT. REQUIRES QP311-AY SOFTWARE.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AND KG8-EA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ARRANGEMENT
GUIDELINES

3. CPU BACKPLANE SLOT ASSIGNMENTS:

<table>
<thead>
<tr>
<th>SLOT</th>
<th>UNIT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8A CPU M8315</td>
<td>CENTRAL PROCESSOR</td>
</tr>
<tr>
<td>2</td>
<td>K8S-AB M8317</td>
<td>OPTION 2: BOOTSTRAP, CLOCK</td>
</tr>
<tr>
<td>3</td>
<td>K8S-AB M8316</td>
<td>OPTION 1: VT555-H INTERFACE, INITIALIZER CABLE</td>
</tr>
<tr>
<td>4</td>
<td>M8S-AA (16KB) OR M8S-AB (32KB)</td>
<td>CORE MEMORY</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>RX8 M8357</td>
<td>FLOPPY DISK INTERFACE (DEVICE CODE 75)</td>
</tr>
</tbody>
</table>

MODULE INSTALLATION RULES:

1. INSTALL BASIC DS316 MODULES IN SLOTS 1-5 AND 12 AS SHOWN ABOVE.

2. IF A SECOND MEMORY MODULE IS ORDERED, INSTALL IN SLOTS 6 AND 7.

3. MODULES FOR OTHER OPTIONAL EQUIPMENT ARE INSTALLED STARTING AT SLOT 11 AND COUNTING UPWARDS DEPENDING ON CUSTOMER'S ORDER. THE EXACT CONFIGURATION BUILT BY THE FACTORY IS SHOWN ON A DECAL ATTACHED TO THE PROCESSOR.
ARRANGEMENT
GUIDELINES

4. POWER SWITCH SETTINGS: FOR NORMAL OPERATIONS, THE SWITCHES ON THE DS318 COMPONENT UNITS SHOULD BE SET AS FOLLOWS:

661 POWER DISTRIBUTION PANEL
- REMOTE/OFF/LOCAL CIRCUIT BREAKER: SET TO REMOTE (LEFT)
- ON/OFF

P22-B/A CENTRAL PROCESSOR
- BOOT PANEL LOCK: SET TO OFF (DOWNS)
- ON/OFF: SET TO OFF (DOWNS)

VT54-H TERMINAL
- ON/OFF: SET TO ON (REAR)

LA36 80 PRINTER
- ON/OFF: SET TO ON (UP)
ARRANGEMENT GUIDELINES

5. MODULE CONFIGURATIONS: WHEN USED IN A DS316 SYSTEM, SWITCHES INTERNAL TO THE ELECTRONICS MODULES ARE SET ACCORDING TO THE DIAGRAMS BELOW. NOTE THAT THE FOLLOWING CONVENTION IS USED IN THESE DIAGRAMS:

X3115 B/A CPU MODULE

<table>
<thead>
<tr>
<th>POLE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

X3117 KNB-A OPTION #2 MODULE

<table>
<thead>
<tr>
<th>POLE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>S2</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

X3116 DEC8-A OPTION #1 MODULE

<table>
<thead>
<tr>
<th>POLE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>J1</td>
<td>NOT USED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J2</td>
<td>INITIALIZE SWITCH CABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J3</td>
<td>VS32-H CABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J4</td>
<td>NOT USED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J5</td>
<td>NOT USED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ARRANGEMENT GUIDELINES

5. MODULE CONFIGURATIONS (CONT'D)

MB8555 KLR-JA MODULE WHEN USED WITH LA3690 (300 BAUD)

<table>
<thead>
<tr>
<th>POLE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>S2</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

MB3357 KXB MODULE

<table>
<thead>
<tr>
<th>POLE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

STANDARD DEV. CODE 75: S1 OFF ON OFF ON OFF ON OFF

OPTIONAL DEV. CODE 76: S1 OFF OFF ON ON OFF OFF OFF

<table>
<thead>
<tr>
<th>CHK</th>
<th>CHANGE NO.</th>
<th>REV.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TITILE: DATASYSTEM 318 CONFIGURATIONS
SIZE: BAR
NUMBER: D8318-1-1
SCALE: NONE
SHEET: 7 OF 8
DIST.:
ARRANGEMENT
GUIDELINES

6. RXB DRIVE UNIT DECALS: THE DS31f IS FURNISHED WITH A SET OF DECALS (P/N 3611382) WHICH ARE USED TO IDENTIFY THE LOGICAL UNIT NUMBERS OF THE RXB DRIVES. ATTACH THE DECALS ABOVE THE RXB DRIVE HANDLES IN THE SEQUENCE SHOWN BELOW:

 ![Diagram of RXB drive unit decals]

7. AC POWER CABLES: THE AC POWER CABLES FOR THE DS31f SYSTEM IS SHOWN BELOW. NOTE THAT THERE IS ONE EXTERNAL AC LINE CORD FOR THE BASIC SYSTEM; THIS LINE CORD ORIGINATES AT THE 861 POWER CONTROL UNIT. NOTE ALSO, THAT THE LA3680 PRINTER MAY BE CONNECTED TO THE 861 CONTROL. HOWEVER, OTHER PRINTERS (LS8 OR LEB) MUST BE CONNECTED DIRECTLY TO AN AC WALL OUTLET.

 ![Diagram of AC power cables]

 DS31f

 V250 6/A RXB RXB

 861

 LA3680 OR LS8-F OR LEB-V

 MAX INPUT - 1500 WATTS

 300 WATTS

 500 WATTS

 ALL CONNECTORS: 120V/15A/1 PHASE = NEMA 5-15P

 OR

 240V/15A/1 PHASE = NEMA 6-15P