g

processor
handbook*

e

Era S

j

processor

handbook

[

04/34/45/55/60
processor
handbook

~ digital equipment corporation

Copyright © 1978, by Digital Equipment Corporation

PDP, UNIBUS
are registered trademarks of
Digital Equipment Corporation

This handbook was designed, produced and typeset
by DIGITAL’s Sales Support Literature Group
using an in-house text-processing system
operating on a DECSYSTEM-20.

T

CONTENTS

CHAPTER 1 INTRODUCTION..................... ..., 1
CHAPTER 2 UNIBUS i 9
CHAPTER 3 ADDRESSINGMODES 21
CHAPTER 4 INSTRUCTIONSET..................oiiva... 41
CHAPTER 5 PROGRAMMING TECHNIQUES 85
CHAPTER 6 PDP-11/04, PDP;1_1/34 129
('il:!APTER 7 PDP-11/45, POP-11/55 ..\ oeoeeeeeenenss 159
CHAPTER 8 PDP-11/60ciiiiiiiiiiinnnn.. 199
CHAPTER 9 MICROPROGRAMMING 233
CHAPTER 10 FLOATING POINT PROCESSORS 247
APPENDIX A UNIBUSADDRESSES A-1
APPENDIX B INSTRUCTIONSETTIMING.................. B-1
INDEX ... Index-1

CHAPTER 1

INTRODUCTION

DIGITAL’s 11 family of interactive computers ranges in size from the
single-board LSI-11 through the extensive PDP-11 group. Develop-
ment efforts are constantly expanding both ends of the spectrum as
well as creating enhanced products in the PDP-11 price versus per-
formance matrix.

TIME ———= Y
AN
11/45 /
¢ 7

1/15 11/35

PRICE

/| LSI-1

FUNCTIONALITY

Figure 1-1 PDP-11 Family Development

The processors specifically discussed in this handbook are the:
ePDP-11/04
ePDP-11/34
ePDP-11/45
ePDP-11/55
ePDP-11/60

INTRODUCTION

PDP is the acronym for Programmable Data Processor; 11 is the num-
ber of the series of the processors designed by DIGITAL. The numeral
following the 11 refers to the general relative power of the processor.
The PDP-11/60 is, for example, a more powerful processor than the
PDP-11/04.

Historically, there were PDP-1s through PDP-10s designed before the
PDP-11 family appeared. Although the PDP-8 family continues to be
one of DIGITAL’s most successful and stable product lines, it is in the
PDP-11 family that there has been the greatest range of growth and
development. PDP-11 processors are a family based on common ar-
chitecture. Compatibility is inherent in design, and is reflected in the
software and in the peripheral options.

It is possible, for example, to develop programs on the smallest PDP-
11 family member, the PDP-11/03, and, with only slight modifications,
run them on any other PDP-11 system. Peripherals such as video
terminals and line printers are equally upward and downward compat-
ible in their ability to interface with PDP-11 family members.

The processors which are discussed specifically in this book have one
outstanding characteristic in common: they all process data on a data
bus called the UNIBUS.

The UNIBUS (discussed in detail in Chapter 2) was first announced by
DIGITAL in 1970, in conjunction with the announcement of the first
PDP-11, the PDP-11/20. It is the UNIBUS and its unique capabilities
which have provided the flexibility and growth options for the PDP-11
family members discussed in this handbook. Figure 1-2 illustrates the
block structure of the PDP-11.

Beyond the UNIBUS commonality, each PDP-11 processor has
features and capabilities uniquely suited for various applications.
Some functionally similar features have been accomplished with dif-
ferent implementations, therefore, there is some repetition of informa-
tion in the chapters describing the individual processor members of
the PDP-11 family, especially in areas like memory management. It is
often necessary to discuss each separately because what may appear
to be very subtle differences in operations may actually be key to a
certain processor’s uniqueness.

PROGRAMMING THE PDP-11

Information is provided in this handbook about the assembly language
parameters, processes, and techniques involved in programming the
PDP-11. DIGITAL publishes tutorial software documentation that pro-
vides detailed information about using the PDP-11 instruction set to
develop programs. There are also well-developed courses for custom-
ers given by DIGITAL'’s Education Services group.

2

INTRODUCTION

8injonng %20ig LL-ddd 2-} @4nbig

YOSSIDOUd TVILINID

¥ILNNOD WYADOUd 28
HIINIOd YOVIS—{ ¥
Sy
v 1INN
o] ~— o
[2) DIAWHLINY
1y
0¥
S¥31S193Y 350d¥Nd
-TV¥INID 1HOI3 ot ewvs L St
_ _ _ _ _ _ ALI¥NOIY _

¥3LSION SNIVIS YOSSIDOYd

SNaINN

S3D1A3Q
¥3IHIO

Asia

YIINRI
3aNIN

SNOILO

AJOWIW
30D

ERIIEL
1NdNI

INTRODUCTION

The material presented on the PDP-11 instruction set, addressing
modes, and on programming techniques is intended, with the exam-
ples included, to illustrate the range of and possibilities for program
development. A companion book, the PDP-11 Software Handbook,
clearly explains the operating systems and associated software which
run on the PDP-11 family of processors. Table 1-1 illustrates these
software products.

Table 1-2 PDP-11 Software Systems Summary

LSI-11 based

11/04 11/34 11/55 11/60 11/70
1 T 1

RT-11 Foreground/Background or Single Job Operating System

16K to 56K bytes of memory. In 16K bytes: Single Job (SJ) operation;
subset MACRO included; BASIC, FORTRAN IV, FOCAL as options. In 32K
bytes: Foreground/Background (F/B) or SJ operation; languages can
support string operations, laboratory and graphics peripherals; full MA-
CRO assembler included; multi-user BASIC available as option support-
ing as many as 4 users (under SJ monitor). MU BASIC supports as many
as 8 users in 48K bytes under SJ monitor; and as many as 4 in 56K bytes
under F/B monitor.

Languages: MACRO included; FORTRAN 1V; BASIC, MU BASIC, FOCAL,
and APL are options.

MUMPS-11 Multi-User Data Base Management System

56K to 248K bytes of memory. A 56K system supports 2-4 users. At least 64K bytes
are needed to support 6 users. Supports maximum of 65 timesharing users, 30-40
simultaneously (depending on processor)

Languages:MUMPS included.

RSTS/E General-purpose Timesharing System

96K to 248K bytes of memory, or 256K to 4096K bytes on 11/70.
Depending on disk and memory configuration, RSTS/E can sup-
port a maximum of 63 users.

Languages: BASIC-PLUS included; COBOL, FORTRAN IV, DIBOL,
APL, and MACRO are options.

RSX-11S Execute-only Real-Time Multi-programming System
16K to 248K of memory. 8K (bytes) system allows 4K for user tasks. 16K
bytes required for on-line task loadirig or support for tasks written in

FORTRAN.

Languages: Program development on host RSX-11M or IAS system.

RSX-11M Small-to-Moderate-sized Real-Time Multi-programming System

32K to 248K bytes of memory or 256K to 4C96K bytes on 11/70. 16K (bytes) system
allows up to 8K for user tasks; includes a subset of MACRO. At least 48K bytes are
required for full MACRO support, concurrent program development and applica-
tion tasks execution, or memory management support. Error logging supported.
Languages: MACRO included; FORTRAN IV and FORTRAN IV-PLUS and BASIC
are options.

IAS Multi-purpose Multi-programming System
128K to 248 K bytes of memory or 256K to 4096K
bytes on 11/70. Timeshared interactive and batch
job processing with concurrent real-time applica-
tions execution. Depending on disk and memory
configuration, as many as 10 interactive users can
be supported on an 11/60; as many as 20
interactive users on an 11/70. Error logging sup-
ported.

Languages: MACRO included; FORTRAN 1V,
FORTRAN IV-PLUS, COBOL, and BASIC are op-
tions.

4

INTRODUCTION

PERIPHERALS

DIGITAL manufactures a full range of peripheral equipment designed
to meet specific needs as well as to maintain PDP-11 family compati-
bility. 170 and storage devices range from paper tape readers through
high volume disk packs and from the DECwriter to the intelligent ter-
minals which provide both hard copy and video display. There is a
complete spectrum of peripheral devices available to complement the
software, to provide the complete answer to customer needs in all
product line areas — business, education, industry, laboratory, and
medicine.

The Peripherals Handbook and the Terminals and Communications
Handbook describe in detail the optional equipment available for use
with the PDP-11 family members.

SPECIALIZED SYSTEMS

DIGITAL’s Computer Special Systems (CSS) and OEM (Original

Equipment Manufacturers) groups can provide the exact hardware.
and software combination to fill any customer need. Software Services
provides software consultation services for customers who have spe-
cialized applications software needs.

PACKAGE SYSTEMS

DIGITAL's Package Systems program offers you the opportunity to
purchase a well-defined, pretested, hardware/software system, rather
than purchasing the options separately. Package systems are fully
equipped PDP-11 configurations including operating system, boot-
strap loader, clock, expander boxes, cabinets, and all required cables.
Entry level systems consist of the correct minimum set of options
defined in the Software Product Description (SPD) as necessary to run
the operating system. Medium and high performance systems have
expanded configurations that in some cases substantially exceed min-
imum SPD requirements. Package systems are available for all of
DIGITAL’s major operating systems. The introductory family of sys-
tems represents the combined effort of the product lines and of cen-
tral engineering to offer the best set of systems to meet customer
application needs. Package systems are priced less than the sum of
the individual options. Figure 1-3 illustrates the combinations (shaded
portions) of options currently available under the Package Systems
program. For example, all the operating systems listed are available
as a package system with the PDP-11/60 processor.

5

INTRODUCTION

PDP-11 FAMILY PACKAGE SYSTEMS

o/s cru 11703 11/04 11/34 11/55 11760 11/70

RT-11

MUMPS

RSX-11M

IAS

RSTS/E

Figure 1-3 Package Systems

DOCUMENTATION

DIGITAL offers several levels of technical documentation describing
PDP-11 software and hardware. The PDP-11 Handbook series, which
includes the Peripherals Handbook, the Terminals and
Communications Handbook, and the Software Handbook, presents an
introductory technical level of PDP-11 family information. The hard-
ware user documentation and software tutorial documentation which
accompany the delivery of a PDP-11 computer system offer the most
detailed levels of information. There are also several good books pub-
lished by commercial publishers which discuss the PDP-11 family.
Specific topics like microprogramming are also well-covered in com-
mercially available books. If you have a specific documentation need,
discuss the issue with a DIGITAL salesperson, who will guide you to
the appropriate literature.

NUMERICAL NOTATION

Three number systems are used in this handbook: octal, base eight;
binary, base two; and decimal, base ten. Octal is used for address
locations, contents of addresses, and instruction operation codes. Bi-
nary is used for descriptions of words and decimal for normal quanti-
tative references.

CHAPTER 2

UNIBUS

The UNIBUS is the outstanding design feature that makes possible the
strengths and flexibility of the PDP-11 family members discussed in
this book. DIGITAL’s unique data bus, the UNIBUS, provides the hard-
ware and software backbone of the PDP-11/04, 34, 45, 55, and 60
processors. The UNIBUS was the first data bus in the history of the
minicomputer industry to enable devices to send, receive, or ex-
change data without processor intervention and without intermediate
buffering in memory.

PDP-11 ARCHITECTURE AND THE UNIBUS

PDP-11 architecture takes advantage of the UNIBUS in its method of
addressing periperal devices. Memory elements, such as the main
core memory or any read-only or solid state memories, have ascend-
ing addresses starting at zero, while registers that store I/0 data or the
status of individual peripheral devices have addresses in the highest
4K words of addressing space. '

There are tens of thousands of memory addresses, but only two — one
for data, one for control — for some peripheral devices, and up to half
a dozen for more complicated equipment like magnetic tapes or disks.

The PDP-11 UNIBUS consists of 56 signal lines, to which all devices,
including the processor, are connected in parallel.

51 lines are bidirectional and five are unidirectional.

Communication between any two devices on the bus is in a mas-
ter/slave relationship. During any bus operation, one device, the bus
master, controls the bus when communicating with another device on
the bus, called the slave. For example, the processor, as master, can
fetch an instruction from the memory, which is always a slave; or the
disk, as master, can transfer data to the memory, as slave. Mas-
ter/slave relationships are dynamic: the processor, for example, may
pass bus control to a disk, then the disk may become master and
communicate with slave memory.

When two or more devices try to obtain control of the bus at once,
priority circuits decide among them. Devices have unique priority
levels, fixed at system installation. A unit with a high priority level
obviously always takes precedence over one with a low priority level;
in the case of units with equal priority levels, the one closest to the
processor on the bus takes precedence over those further away.

9

.l

UNIBUS

SNAINN 1-g 8inbig

$3D1A3Q TV¥IHJINId

21901321A3a
T041INOD
¥31S193y | LdNIITLINI
BIn3a 301237135
$S3yaav

AJOWIW

JOSS3ID0Ud

AJOW3IW
IO

TO¥LINOD
ALI¥OId
sng

l-[e) I EREIN
SSaav

315193
¥3d4n9

SHIVd viva
JOSS3D0¥d

ONIWIL Sng
JOSSID0Ad

f

SNAINN

‘O3 ssIyaav
sng

10

UNIBUS

Suppose the processor has control of the bus when three devices, all
of higher priority than the processor, request bus control. If the re-
questing devices are of different priority, the processor will grant use
of the bus to the one with the highest priority. If they are all of the same
priority, all three signals come to the processor along the same bus
line, so that it sees only one request signal. Its reply granting priority
travels down the bus to the nearest requesting device, passing
through any intervening non-requesting devices. The requesting de-
vice takes control of the bus, executes a single bus cycle of a few
hundred nanoseconds, and relinquishes the bus. Then the request
grant sequence occurs again, this time going to the second device
down the line, which has been waiting its turn. When all higher-priority
requests have been granted, control of the bus returns to the lowest-
priority device, usually the processor.

The processor usually has lowest priority because in general it can
stop whatever it is doing without serious consequences. Peripheral
devices may be involved with some kind of mechanical motion, or may
be connected to a real-time process, either of which requires immedi-
ate attention to a request, to avoid data loss.

The priority arbitration takes place asynchronously in parallel with
data transfer. Every device on the bus except memory is capable of
becoming a bus master.

BUS COMMUNICATION

Communication is interlocked, so that each control signal issued by
the master must be acknowledged by a response from the slave to
complete the transfer. This simplifies the device interface because
timing is no longer critical. The maximum typical transfer rate on the
UNIBUS is one 16-bit word every 400 ns, or about 2.5 million 16-bit
words per second.

USING THE BUS

A device uses the bus if it needs to:

eRequest the processor. As a result, the processor stops what itis
doing, enters an interrupt service routine, and services the device.

eTransfer a word or byte of data to or from another device without
involving the processor, an NPR (non-processor request) transfer.
Such functions are performed by direct memory access devices
such as disks or tape units.

Whenever two devices communicate, it is called a bus cycle. Only
one word or byte can be transferred per bus cycle. An instruction
cycle involves one or more bus cycles. Fetching an instruction in-
volves a bus cycle; storing a result in memory or a device register
involves another bus cycle.

11

UNIBUS

BUS CONTROL _
There are two ways of requesting bus control: non-processor requests
(NPRs) or bus requests (BRs).

A NPR is issued when a device wishes to perform a data transaction. A
NPR does not use the CPU; therefore, the CPU can relinquish bus
control while an instruction is being executed.

A BR is issued when a device needs to interrupt the CPU for service.
An interrupt is not serviced until the processor has finished executing
its current instruction.

BUS REQUESTS
©DEVICE makes a bus request by asserting a BR.

®eBUS ARBITRATOR recognizes the request by issuing a Bus Grant
(BG). This bus grant is issued only if the priority of the device is
greater than the priority currently assigned to the processor.

e DEVICE acknowledges the bus grant and inhibits further grants by
asserting Selection Acknowledge (SACK). The device also clears BR.

©BUS ARBITRATOR receives SACK and clears BG.
e DEVICE asserts Bus Busy (BBSY) and clears SACK.
®DEVICE asserts Bus Interrupt (INTR) and its vector address.

NON-PROCESSOR REQUESTS
¢DEVICE makes a non-processor request by asserting NPR.

eBUS ARBITRATOR recognizes the request by issuing a non-proces-
sor grant or NPG.

®DEVICE acknowledges the grant and inhibits further grants by as-
serting SACK; device also clears NPR.

®BUS ARBITRATOR receives SACK and clears NPG.
©DEVICE asserts Bus Busy (BBSY) and clears SACK.
© DEVICE starts its data transaction.

BUS BUSY SIGNAL
Once a device’s bus request has been honored, it becomes bus mas-
ter as soon as the current bus master relinquishes control.

eCurrent bus master relinquishes bus control by clearing bus busy
(BBSY).

®New device assumes bus control by setting BBSY.

12

UNIBUS

INTERRUPTS

interrupt handling is automatic in the PDP-11. No device polling is
required to determine which service routine to execute. A device can
interrupt the CPU only if it has gained bus control via a BR. The
DEVICE requests an interrupt by asserting INTR along with an inter-
rupt vector. The vector directs the CPU to a memory location which
contains the starting address of an interrupt service routine. (“l need
to interrupt.”) The CPU accepts the interrupt vector and asserts SSYN
(Slave YNc) to indicate the vector has been accepted. (“I have your
interrupt.”) The DEVICE releases the bus to the CPU by clearing INTR,
removing the vector, and clearing BBSY. (“I'm giving control of the bus
back to you.”) The CPU acknowledges by clearing SSYN (Slave Sync),
stores the information it needs to return to the interrupted program (a
hardware stack located in memory is used for this purpose), and
enters the interrupt handling sequence. (“Thank you, I'm starting to
service your interrupt.”) When the interrupt operation is completed,
the CPU removes the information that was stored on the stack and
resumes the program at the point where it was interrupted. A more
detailed description of the operations required to service an interrupt
follows:

1. Processor relinquishes control of the bus, priorities permitting.

2. When a master gains control, it sends the processor an interrupt
request and a unique memory address which contains the address
of the device’s service routine, called the interrupt vector address.
Immediately following this pointer address is a word (located at
vector address +2) which is to be used as the new processor status
word.

3. The new PC and PS (interrupt vector) are taken from the specified
address. The old PS and PC are then pushed onto the current
stack. The service routine is then entered.

4. The device service routine can cause the processor to resume the
interrupted process by executing the return from interrupt instruc-
tion, described in Chapter 4, which pops the two top words from the
current processor stack and uses them to load the PC and PS
registers.

A device routine can be interrupted by a higher priority bus request
any time after the new PC and PS have been loaded. If such an inter-
rupt occurs, the PC and PS of the service routine are automatically
stored in the temporary registers and then pushed onto the new cur-
rent stack, and the new device routine is entered.

13

UNIBUS

Interrupt Servicing

Every hardware device capable of interrupting the processor has a
unique pair of locations (2 words) reserved for its interrupt vector. The
first word contains the location of the device’s service routine, and the
second, the processor status word that is to be used by the service
routine. Through proper use of the PS, the programmer can switch the
operational mode of the processor, and modify the processor’s priori-
ty level to mask out lower level interrupts.

PRIORITY CONTROL

The PDP-11 priority system determines which device obtains the bus.
Each PDP-11 device is assigned a specific location in the priority
structure. Priority arbitration logic determines which device obtains
the bus according to its position in the priority structure. The priority
structure is 2-dimensional; i.e., there are vertical priority levels and
horizontal priorities at each level. There are five vertical priority levels.

Devices that gain bus control with one of the bus request lines (BR7,
BR6, BR5) can take full advantage of the power of the processor by
requesting an interrupt. The entire instruction set is then available for
manipulating data and status registers. When a device servicing pro-
gram is being run, the task being performed by the processor is
interrupted, and the device service routine is initiated. After the device
request has been satisfied, the processor returns to its former task.
Note that interrupt requests can be made only if bus control has been
gained through a BR priority level.

Bus Request Level

There are two lines associated with each BR level. The bus request is
made on a BR line (BR7, BR6, BR5, or BR4). The bus grant is made on
the corresponding grant line (BG7, BG6, BG5, or BG4). BR leveis BR3
through BRO are used only by the software; devices are not assigned
to these BR levels. Unlike NPRs, a BR can be handled only between
instruction cycles. The BR levels are used for interrupts so that the
device can obtain service from the CPU. A request made at any BR
level requires processor intervention.

Priority Levels

Because there are only five vertical priority levels, NPR, BR7, BR6,
BRS5, and BR4, it is often necessary to connect more than one device to
a single level. When a number of devices are connected to the same
level, the situation is referred to a horizontal priority. If more than one
device makes a request at the same level, then the device closest to
the CPU has the highest priority. :

14

B |

UNIBUS

DEVICE
o REQUEST
PRIORITY UINE

~<——NPR _—
7) -DMA D2 -DMA D3 -DMA

-+—BR7

o
~

FH EH B EH
H-

I

<——BR&

INCREASING PRIORITY

<—BRS

IS
o

alEafdanialiis

~—BR4

T

T
@
Ed
x

INCREASING _ PRIORITY

© e0 e w

Figure 2-2 Priority Control

The grant line for the NPR level is connected to all devices on that level
in a “daisy chain” arrangement. When an NPG is issued, it first goes to
the device closest to the CPU. If that device did not make the request,
it permits the NPG to travel to the next device. Whenever the NPG
reaches a device that has made a request, that device captures the
grant, and prevents it from passing to any subsequent device in the
chain.

BR chaining is identical to NPR chaining in function. However, each

BR level has its own BG chain. Thus, the grant chain for BR7 is the
BG7 line which is chained through all devices at the BR7 level.

PRIORITY ASSIGNMENTS

When assigning priorities to a device, three factors must be consid-
ered: operating speed, ease of data recovery, and service require-
ments.

Data from a fast device is available for only a short time period. There-
fore, highest priorities are usually assigned to fast devices to prevent
loss of data and to prevent the bus from being tied up by slower
devices.

If data from a device is lost, recovery may be automatic, may require
manual intervention, or may be impossible. Therefore, highest priori-

15

UNIBUS

ties are assigned to devices whose data cannot be recovered, while
lowest priorities are reserved for devices with automatic data recovery
features.

CPU Priority Level

In addition to device priority levels, the CPU has a programmable
priority. The CPU can be set to any one of eight priority levels. Priority
is not fixed; it can be raised or lowered by software. The CPU priority is
elevated from level 4 to level 6 when the CPU stops servicing a BR4
device and starts servicing a BR6 device. This programmable priority
feature permits masking of bus requests. The CPU can hold off servic-
ing lower priority devices until more critical functions are completed.
For example, when CPU priority is set to level 6, all bus requests on
the same and lower levels are ignored (in this case, all requests
appearing on BR4, BR5, and BR6).

DATA TRANSACTIONS

There are four types of data transactions:

eDATO — a data word is transferred out of the master and into its
slave.

eDATOB — a data byte is transferred out of the master and into its
slave. ‘

e DATI — a data word or byte is transferred into the master.

e DATIP — used with destructive readout devices such as core memo-
ry. It is similar to a DATI except that data is not rewritten (restored)
into the addressed memory location (data is restored during a DATI).
Must be followed by DATO or DATOB to the same location.

EXECUTION OF DATA TRANSACTIONS
Before a device can perform a data transaction, it must:

@ Obtain control of the bus via an NPR.

eSelect (address) the slave device it wishes to communicate with.
Each device on the bus has a unique address.

eTell the slave what type of data transaction is to be performed.
Data transactions between a master and slave device are synchron-

ized by master sync (MSYN) and slave signals. Below is an example of
how these signals are used during a typical DATI transaction:

1. Master selects the slave by addressing it, specifies the type of data
transaction, and requests data by asserting MSYN.(“Give me da-
ta.”)

16

T

2. Slave gathers the data and asserts SSYN when the data is avail-
able. (“Here itis.”)

3. Master drops MSYN after it accepts the data. (“Thank you, | have
the data.”)

4. Slave removes data from the lines and acknowledges the master by
dropping SSYN. (“You're welcome.”)

17

10ssa20.d ay)
ul aunnou Bujpuey oy
101JU0d snq sidjsues |

snq
B} 4O |0J3UOD SIBSSY

sjuelb Jaylng suqiyul
9 juesb sabpajmournoy

1043U02 SNq Sioysuel|

J0J1U09 snq sisenbay

J0JIU0D SN sJajsuel |

1senb
-a1 snq Ayoiid 3saybiy

NOILONNS

ASd8g 18}

-Je polIasse H1Ni
‘(ddN Jou) Hg

e Aq pauieb usaq
Sey [0J3U09 }|

loysew
snq Aq payassy

99 10 HdN
0} asuodsay

uoijonuisut jayy

SNOUOIYSUASY

SNOUO0JYOUASy

SNOU0JYoUASY

ONINIL

Alowa

S901A0P |IY

Alowa

iejsew
snq IxeN

Aowa

19)seW
snq 1xaN
Alows

‘1534

19)SEIN dnuieyyj
J9)se Asng sng
J9)sew abpajmouy
snq IxaN -0y UO1}99[9S
Alowa juelsn sng
ao1Aep Auy 1sanbay sng
1V1-315)

ndo 10ss990.4d-uoN
aoInep 1senbay

VING Auy 108s900.d-UoN

30HNOS JNVN

[onuo0g sng |-z 3|qeL

H1INI

Asgd

MOVS
vog
niy}
198
yug

niy)
Ldg

SdN

ddN

IVYNOIS

18

19

CHAPTER 3
ADDRESSING MODES

In the PDP-11, all memory reference addressing is accomplished us-
ing the eight general purpose registers. In specifying an address of the
data (operand address), one of the eight registers is selected and one
of several addressing modes. Each PDP-11 memory reference in-
struction specifies the:

efunction to be performed (operation code)

egeneral purpose register to be used when locating the source and/or
destination operand

eaddressing mode, which specifies how the selected registers are to
be used

The instruction format and addressing techniques available to the pro-
grammer are of particular importance. It is in the combination of ad-
dressing modes with the instruction set that the PDP-11 provides a
unique number of capabilities. The PDP-11 is designed to handle
structured data both efficiently and with flexiblity. The general purpose
registers implement these functions in the following ways, by acting:
eas accumulators: holding the data to be manipulated

eas pointers: The contents of the register are the address of the oper-
and, rather than the operand itself, allowing automatic stepping
through memory locations.

eas index registers: The contents of the register are added to the
second word of the instruction to produce the address of the oper-
and. This capabilty allows easy access to variable entries in a list.

Utilization of the registers for both data manipulation and address
calculation results in a variable length instruction format. If registers
alone are used to specify the data source, only one memory word is
required to hold the instruction. In certain modes, two or three words
may be utilized to hold the basic instruction components. Special ad-
dressing mode combinations in the PDP-11 enable temporary data
storage for convenient dynamic handling of frequently accessed data.
This is known as stack addressing. Programming techniques utilizing
the stack are discussed in Chapter 5. Register 6 is always used as the
hardware stack pointer, or SP. Register 7 is used by the processor as
its program counter (PC). Thus, the register arrangement to be con-
sidered in conjunction with instructions and with addressing modes is:
registers 0-5 are general purpose registers, register 6 is the hardware

21

ADDRESSING MODES

stack pointer, and register 7 is the program counter. The full PDP-11
instruction set and instruction formats are explained in Chapter 4.

For the purpose of clearly illustrating the use of the various addressing
modes, the following instructions are used in this chapter:

Mnemonic Description Octal Code
CLR Clear (Zero the 0050DD
specified destina-
tion.)
CLRB Clear Byte (Zero the 1050DD

byte in the specified
destination.)

INC Increment (Add 1to 0052DD
contents of destina-
tion.)

INCB Increment Byte 1052DD

(Add 1 to the con-
tents of destination
byte.)

COM Complement (Re- 0051DD -
place the contents
of the destination by
their logical 1’s
complements; each
0 bit is set and each
1 bitis cleared.)

COMB Complement Byte 1051DD

(Replace the con-
tents of the destina-
tion byte by their
logical 1'scomple-
ments; each 0 bit is
set and each 1 bit is
cleared.)

22

ADDRESSING MODES

ADD Add (Add source 06SSDD
operand to destina-
tion operand and
store the result at
destination ad-
dress.)

DD = destination field (6 bits)
SS = source field (6 bits)
() = contents of

Single and double operand instructions utilize the following format.

The instruction format for the first word of all single operand instruc-
tions (such as clear, increment, test) is

&
[MODE | @ [Rn
5 6 5
N a3 2 0

OP CODE 1 1

DESTINATION ADDRESS

* SPECIFIES DIRECT OR INDIRECT ADDRESS
** SPECIFIES HOW REGISTER WILL BE USED
*** SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

Figure 3-1 Single Operand Instruction Format

The instruction format for the first word of the double operand instruc-
tion is as follows:

LI - LR L] * 8 * LAY
OP CODE MODE E o Rn I MODE ; o Rn J
| L . . i . . A i .
15 12 \I 1 10 9 8 bJ \5 4 3 2 0),
SOURCE ADDRESS J]

DESTINATION ADDRESS

* DIRECT DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
** SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED
*** SPECIFIES A GENERAL REGISTER

Figure 3-2 Double Operand Instruction Format

23

—

ADDRESSING MODES

Bits 3-5 specify the binary code of the addressing mode chosen.

The four direct addressing modes are:

eregister

eautoincrement

eautodecrement

eindex

When bit 3 of the instruction is set, indirect addressing is specified and
the four basic modes become deferred modes. In a register deferred
mode, the content of the selected register is taken as the address of
the operand. In the other deferred modes, the content of the register
specifies the address of the operand, rather than the operand itself.
Prefacing the register operand(s) with an “@” sign or placing the

register in parentheses indicates to the MACRO-11 assembler that
deferred addressing mode is being used.

The indirect addressing modes are:
eregister deferred

e autoincrement deferred

e autodecrement deferred

eindex deferred

Program counter (register 7) addressing modes are:

eimmediate

®absolute

erelative

erelative deferred

The PDP-11 addressing modes are explained and shown in examples

in the following pages. They are summarized, in text and in graphic
representation, at the end of the chapter.

REGISTER MODE MODE 0 Rn

Register mode provides faster instruction execution. There is no need
to reference memory to retrieve an operand. Any of the general regis-
ters can be used as simple accumulators. The operand is contained in
the selected register. Assembler syntax requires that a general regis-

ter be defined as follows:

RO = %0
R1 = %1
R2 = %2

24

ADDRESSING MODES

% sign indicates register definition.
Register Mode Examples

Symbolic Instruction Description
Octal Code
INC R3 005203 Add 1 to the con-
tents of R3.

Represented as:

RO

Rt
R2

: T
[o oo 0o 1 0 1 0o 1 o]o o:o[o 19 [SELECT | R3

. . : REGISTER
OP CODE (mc(ooszn-—T J i
DESTINATION FIELD R (SP)

R7 (PC)

Figure 3-3 Register Mode Example

Symbolic Instruction Description
Octal Code
ADD R2,R4 060204 Add the contents of

R2 to the contents of
R4, replacing the or-
iginal contents of R4

with the sum.
Represented as:
BEFORE AFTER
re | 000002 | re | 000002 |
re [000004 | R4 000006 |
REGISTER DEFERRED MODE MODE 1 (Rn)

In register deferred mode, the address of the operand is stored in a
general purpose register. The address contained in the general
purpose register directs the CPU to the operand. The operand is locat-
ed outside the CPU, either in memory, or in an I/0 register.

This mode is used for: sequential lists, indirect pointers in data struc-
tures, top of stack manipulations, and jump tables.

25

ADDRESSING MODES

Register Deferred Mode Example

Symbolic Instruction Octal Description
Code
CLR (R5) 005015 The contents of the

location specified in
R5 are cleared.

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1677 Rs [ootroo | te77 RS 001700 |
1700 000100 1700 000000
AUTOINCREMENT MODE MODE 2 (Rn)+

In autoincrement mode, the register contains the address of the oper-
and; the address is automatically incremented after the operand is
retrieved. The address then references the next sequential operand.
This mode allows automatic stepping through a list or series of oper-
ands stored in consecutive locations. When an instruction calls for
mode 2, the address stored in the register is autoincremented each
time the instruction is executed. It is autoincremented by 1 if you are
using byte instructions, by 2 if you are using word instructions.

Autoincrement Mode Example

Symbolic Instruction Description
Octal Code
CLR (R5)+ 005025 Contents of R5 are
used as the address
of the operand.

Clear selected oper-
and and then incre-

ment the contents of
R5 by 2.
Represented as:
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 [oosozs] e[030000 |20000 [oosces | ms [oso00z |

26

ADDRESSING MODES

AUTOINCREMENT DEFERRED MODE MODE 3 @(Rn)+

In autoincrement deferred mode, the register contains a pointer to an
address. The “+” indicates that the pointer in R2 is incremented by 2
after the address is located. Mode 2, autoincrement, is used only to
access operands that are stored in consecutive locations. Mode 3,
autoincrement deferred, is used to access lists of operands stored
anywhere in the system; i.e., the operands do not have to reside in
adjoining locations. Mode 2 is used to step through a table of volumes,
mode 3 is used to step through a table of addresses.

Autoincrement Deferred Example

Symbolic Instruction Description
Octal Code
INC @(R2)+ 005232 Contents of R2 are
used as the address
of the address of the

operand. The oper-
and is increased by
1, contents of R2 are
incremented by 2.

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
re [otozco] Rz [ot0302
1010 000025 1010 000026
1012 1012
—
yed >
10300 001010 10300 001010
AUTODECREMENT MODE MODE 4 =(Rn)

In autodecrement mode, the register contains an address that is auto-
matically decremented; the decremented address is used to locate an
operand. This mode is similar to autoincrement mode, but allows step-
ping through a list of words or bytes in reverse order. The address is
autodecremented by 1 for bytes, by 2 for words.

27

ADDRESSING MODES

Autodecrement Mode Example

Symbolic Instruction Description
Octal Code
INCB —(R0) 105240 The contents of RO

are decremented by
1, then used as the
address of the oper-
and. The operand
byte is increased by
1.

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER
1000 [oos2a0 | Rre[ot7776] 1000 [oosea0] ro [017774]
AUTODECREMENT DEFERRED MODE MODE 5 @-(Rn)

In autodecrement deferred mode, the register contains a pointer. The
pointer is first decremented by 2, then the new pointer is used to
retrieve an address stored outside the CPU. This mode is similar to
autoincrement deferred, but allows stepping through a table of ad-
dresses in reverse order. Each address then redirects the CPU to an
operand. Note that the operands do not have to reside in consecutive
locations.

Autodecrement Deferred Mode Example

Symbolic Instruction Description
Octal Code
COM @—(R0) 005150 The contents of RO

are decremented by
2 and then used as
the address of the
address of the oper-
and. The operand is
1’s complemented.

28

Represented as:

ADDRESSING MODES

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
10100 012345 ro [oto77e] o0 165432 ro [otor74, |
10102 10102
10774 010100 10778 010100
10776 10776
INDEX MODE MODE 6 * X(Rn)

In index mode, a base address is added to an index word to produce
the effective address of an operand; the base address specifies the
starting location of table or list. The index word then represents the
address of an entry in the table or list relative to the starting (base)
address. The base address may be stored in a register. In this case,
the index word follows the current instruction. Or the locations of the
base address and index word may be reversed (index word in the
register, base address following the current instruction).

Index Mode Example

Symbolic

CLR 200(R4)

Represented as:

1020
1022
1024

1200
1202

BEFORE
ADDRESS SPACE

Instruction
Octal Code

005064
002000

REGISTER

Description

The address of the
operand is deter-
mined by adding
200 to the contents
of R4. The location
is then cleared.

AFTER

ADDRESS SPACE REGISTER

005064

R4 L 001000

| 1020

005064 Ra [oot000]

000200

177777

1022

000200

1024

1200

000000

29

ADDRESSING MODES

INDEX DEFERRED MODE MODE 7 @X(Rn)

In index deferred mode, a base address is added to an index word.
The result is a pointer to an address, rather than the actual address.
This mode is similar to mode 6, except that it produces a pointer to an
address. The content of that address then redirects the CPU to the
desired operand. Mode 7 provides for the random access of operands
using a table of operand addresses.

Index Deferred Mode Example

Symbolic Instruction Description
Octal Code

Add @1000(R2),R1 067201 1000 and the con-
001000 tents of R2 are

summed to produce
the address of the
address of the
source operand, the
contents of which
are added to the
contents of R1. The
result is stored in

Represented as:
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 067201 Rt [ooteza | 1020 067201 ri [ootess]
1022 001000 s 500100 1022 001000 re
1024 1024
1050 000002 1050 000002
1100 001050 1000 1100 001050
+100
7100

USE OF THE PC AS A GENERAL REGISTER

Register 7 is both a general purpose register and the program counter
on a PDP-11. When the CPU uses the PC to access a word from
memory, the PC is automatically incremented by 2 to contain the ad-
dress of the next word of the instruction being executed or the address
of the next instruction to be executed. When the program uses the PC
to access byte data, the PC is still incremented by 2.

30

ADDRESSING MODES

The PC can be used with all the PDP-11 addressing modes. There are
four modes in which the PC can provide advantages for handling
position-independent code (see Chapter 5) and for handling unstruc-
tured data. These modes refer to the PC and are termed immediate,
absolute (or immediate deferred), relative, and relative deferred. -

PC IMMEDIATE MODE MODE 2 #n

Immediate mode is equivalent to using the autoincrement mode with
the PC. It provides time improvements for accessing constant oper-
ands by including the constant in the memory location immediately
following the instruction word.

PC Immediate Mode Example

Symbolic Instruction Description
Octal Code

ADD #10,R0 062700 Thevalue 10 s lo-
000010 cated in the second

word of the instruc-
tion and is added to
the contents of RO.
Just before this in-
struction is fetched
and executed, the
PC points to the first
word of the instruc-
tion. The processor
fetches the first
word and incre-
ments the PC by
two. The source op-
erand mode is 27
(autoincrement the
PC). Thus, the PCis
used as a pointer to
fetch the operand
(the second word of
the instruction) be-
fore being incre-
mented by two to
point to the nextin-
struction.

31

ADDRESSING MODES

Represented as:

BEEORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 062700 ro [ooooz0] 1020 062700 ro [oooozo |
1022 000010 \ 1022 000010
PC PC
1024 1024 e
PC ABSOLUTE MODE MODE 3 @#A

This mode is the equivalent of immediate deferred or autoincrement

deferred mode using the PC. The contents of the location following the
instruction are taken as the address of the operand. Immediate data is
interpreted as an absolute address (i.e., an address that remains con-
stant no matter where in memory the assembled instruction is execut-

ed).

PC Absolute Mode Example

Symbolic Instruction Description
Octal Code

CLR @#1100 005037 Clears the contents
001100 of location 1100.

Represented as:

BEFORE : AFTER
ADDRESS SPACE ADDRESS SPACE
20 oosos7 |k 20 oosos7
22 001100 PG 22 oooo | e
24
1100 77777 1100 000000
1102 1102
PC RELATIVE MODE MODE 6 A

This mode is index mode 6 using the PC. The operand’s address is
calculated by adding the word that follows the instruction (called an
“offset”) to the updated contents of the PC.

PC+2 directs the CPU to the offset that follows the instruction. PC+4
is summed with this offset to produce the effective address of the
operand. PC+4 also represents the address of the next instruction in

the program.

32

I

I |

ADDRESSING MODES

With the relative addressing mode, the address of the operand is
always determined with respect to the updated PC. Therefore, when
the instruction is relocated, the operand remains the same relative
distance away.

The distance between the updated PC and the operand is called an
offset. After a program is assembled, this offset appears in the first
word location that follows the instruction. This mode is useful for writ-
ing position-independent code (see Chapter 5).

PC Relative Mode Example

Symbolic Instruction Description
Octal Code

INC A 005267 To increment loca-
000054 tion A, contents of

memory location in
the second word of
the instruction are
added to PC to pro-
duce address A.
Contents of A are in-
creased by 1.

Represented as:

BEFORE AFTER

ADDRESS SPACE ADDRESS SPACE
1020 005267 1020 0005267
1022 000054 \ 1022 000054
1024 PC 1024 «—PC
1026 1026

+54
Hoo\ooiio’/w e

PC RELATIVE DEFERRED MODE MODE 7 @A

This mode is index deferred (mode 7), using the PC. A pointer to an
operand’s address is calculated by adding an offset (that follows the
instruction) to the updated PC.

This mode is similar to the relative mode, except that it involves one
additional level of addressing to obtain the operand. The sum of the
offset and updated PC (PC+4) serves as a pointer to an address.

When the address is retrieved, it can be used to locate the operand.

33

ADDRESSING MODES

PC Relative Deferred Mode Example -

Symbolic

CLR @A

Represented as:

1020
1022
1024

1044

10100

BEFORE
ADDRESS SPACE

005077
000020

010100

Instruction
Octal Code

005077
000020

Description

Adds the second
word of the instruc-
tion to PC to pro-
duce the address of
the address of the
operand. Clears op-
erand.

AFTER

ADDRESS SPACE

1020

L

005077

PC 1022

000020 PC

1024

Jozé 1044

1044

016100

]

10100 000000

Table 3-1 summarizes the four basic modes used with direct address-

ing:

Binary
Code

000

010

Table 3-1 Direct Addressing Modes

Mode Name Symbolic Function
0 Register Rn Register contains
operand.
2 Autoincrement (Rn)+ Register is used

34

as a pointer to
sequential data,
then increment-
ed.

ADDRESSING MODES

Binary Mode Name Symbolic Function
Code
100 4 Autodecrement —(Rn) Register is de-

cremented and
thenused as a
pointer to se-
quential data.

110 6 Index X(Rn) Value X is added
to (Rn) to pro-
duce address of
operand. Neither
X nor (Rn) is
modified.

Table 3-2 summarizes the same four basic modes used with indirect
addressing.

Table 3-2 Indirect Addressing Modes

Binary Mode Name Symbolic Function

Code

001 1 Register De- @Rnor Register contains
ferred (Rn) the address of

the operand.

011 3 Autoincrement @(Rn)+ Registeris first
Deferred used as a pointer

to a word con-
taining the ad-
dress of the op-
erand, then in-
cremented (al-
ways by 2, even
for byte instruc-
tions).

35

ADDRESSING MODES

Binary Mode Name Symbolic Function

Code

101 5 Autodecrement @—-(Rn) Registeris de-
Deferred cremented (al-

ways by 2, even
for byte instruc-
tions) and then
used as a pointer
to a word con-
taining the ad-
dress of the op-
erand.

111 7 Index Deferred @X(rn) Value X (located
in a word con-
tained in the in-
struction) and
(Rn) are added
and the sumis
used as a pointer
to a word con-
taining the ad-
dress of the op-
erand. Neither X
nor (Rn) is modi-
fied.

When used with the PC, these modes are termed inmmediate, abso-
lute (or immediate deferred), relative, and relative deferred, and are
summarized in Table 3-3.

Table 3-3 PC Register Addressing Modes

Binary Mode Name Symbolic Function

Code

010 2 Immediate #n Operand is con-
tained in the in-
struction.

36

Binary
Code

011

110

111

Mode

ADDRESSING MODES

Name

Absolute

Relative

Relative Deferred

Symbolic

@#A

@A

Function

Absolute
address is con-
tained in the in-
struction.

Address of A, re-
lative to the in-
struction, is con-
tained in the
instruction.

Address of loca-
tion containing
address of A, re-
lative to the in-
struction, is con-
tained in the in-
struction.

GRAPHIC SUMMARY OF PDP-11 ADDRESSING MODES

General Register Addressing Modes

Ris a general register,0to 7.
(R) is the contents of that register.

Mode 0

Register

R
Wlsmucnon]———[OPERAND |

Mode 1

R
INSTRUCTION |———-L ADDRESS |————=| OPERAND]

37

OPRR

Register deferred OPR(R)

R contains oper-
and.

R contains
address.

ADDRESSING MODES

Mode 2 Autoincrement OPR (R)+ R contains ad-
dress, then incre-

R ment (R).

IINSTRUCTION}—-I ADDRESS OPERAND |

Mode 3 Autoincrementde- OPR R contains ad-
ferred @(R)+ dress of address,
then increment
(R) by 2.

Lmsrnucnom_}—.[ADDZESS }—+—{ aporess J——— operano]

Mode 4 Autodecrement OPR —(R) Decrement (R),
then R contains
address.

R
Rooeess 2 R vor
Mode 5 Autodecrementde- OPR@-— Decrement (R) by
ferred (R) 2, then R con-
tains address of
address.

R
MSTRUCTION_]‘-L aporess |———- 2 aooRess |——f operano |
|

Mode 6 Index OPR X(R) (R)+Xis ad-

dress, second
R
PC U\ISTRUCTMADDRESS
©
PC+2 I X 'L

word of instruc-
tion.

38

B

ADDRESSING MODES

Mode 7 Index deferred OPR (R)+Xis address
@X(R) (second word) of
address.
PC ENSTRUCTﬂ]———cl ADD:ESS

PC+2 | X lﬁ

ADDRESS HOPERAND]

Program Counter Addressing Modes

Register =7
Mode 2 Immediate OPR #n Literal operand n
is contained in
P the instruction.
Mode 3 Absolute OPR @Q#A Address A is
contained in the
pC instruction.
pcee | a |~ orerano |
Mode 6 Relative OPRA PC+4 + Xis ad-
dress. PC+4 is
pC updated PC.
PC+
e O%
s
Mode 7 Relative deferred OPR @A PC+4 + Xis ad-
dress of address.
pC PC+4 is updated
PC.

pC+2

Af aporess || operanp
R
{

39

CHAPTER 4

INSTRUCTION SET

The PDP-11 instruction set and addressing modes produce over 400
unique instructions. The instruction set offers a wide choice of opera-
tions, so that a single instruction will frequently accomplish a task that
would require several in a traditional computer. PDP-11 instructions
allow byte and word addressing in both single and double operand
formats. This saves memory space and simplifies the implementation
of control and communications applications. The PDP-11’s use of
double operand instructions allows you to perform several operations
with a single instruction. For example, ADD A,B adds the contents of
location A to location B, storing the result in location B. Traditional
computers would implement this instruction in the following way:

CLRA,C
LDAA
ADDB
STRB

The PDP-11 instruction set also contains a full set of conditional

branches, eliminating excessive use of jump instructions. All PDP-11

instructions fall into one of three categories:

eSingle Operand — one part of the word specifies the operation,
referred to as “op code,” the second part provides information for
locating the operand.

e Double Operand — the first part of the word specifies the operation
to be performed, the remaining two parts provide information for
locating two operands.

e Program Control — the first part of the word specifies the operation
to be performed, the second part indicates where the action is to
take place in the program.

SINGLE OPERAND INSTRUCTIONS
Mnemonic Instruction

General
CLR(B) clear destination
com(B) 1’s complement dst
INC(B) increment dst
DEC(B) decrement dst
NEG(B) 2’s complement negate dst
TST(B) test dst

41

INSTRUCTION SET =

Mnemonic Instruction

Shift & Rotate
ASR(B) arithmetic shift right
ASL(B) arithmetic shift left
ROR(B) rotate right
ROL(B) rotate left
SWAB . swap bytes
Multiple Precision \‘
ADC(B) add carry
SBC(B) subtract carry
SXT sign extend
MFPS move byte from processor status
MTPS Move byte to processor status

Instruction Format

[] MODE | @ ! R I
e o R
15 6 5 & 3 2 0
(- _J J
OP CODE 4 I
DESTINATION ADDRESS

* SPECIFIES DIRECT OR INDIRECT ADDRESS
** SPECIFIES HOW REGISTER WILL BE USED
*** SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

Figure 4-1 Single Operand Instruction Format

The instruction format for single operand instructions is:

eBit 15 indicates word or byte operation.

®Bits 14-6 indicate the operation code, which specifies the operation
to be performed.

e Bits 5-0 indicate the 3-bit addressing mode field and the 3-bit gener-
al register field. These two fields are referred to as the destination
field.

DOUBLE OPERAND INSTRUCTIONS
Mnemonic Instruction

General
MOV(B) move source to destination
ADD add src to dst
suB subtract src from dst
ASH shift arithmetically
ASHC arithmetic shift combined

42

INSTRUCTION SET

Mnemonic Instruction

Logical
BIT(B) bit test
BIC(B) bit clear
BIS(B) bit set
XOR exclusive OR

Instruction Format

{ OP CODE MODE
L

1 L !

15 12 n 10 9 8
-

SOURCE ADDRESS J

DESTINATION ADDRESS

* DIRECT DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
* % SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED
*** SPECIFIES A GENERAL REGISTER

Figure 4-2 Double Operand Instruction Format

The format of most double operand instructions is similar to that of
single operand instructions except that they have two fields for locat-
ing operands. One field is called the source field, the other is called the
destination field. Each field is further divided into addressing mode
and selected register. Each field is completely independent. The mode
and register used by one field may be completely different than the
mode and register used by another field.

eBit 15 indicates word or byte operation except when used with op
code 6. Then it indicates an ADD or SUBtract instruction.

e Bits 14-12 indicate the op code, which specifies the operation to be
done.

eBits 11-6 indicate the 3-bit addressing mode field and the 3-bit gen-
eral register field. These two fields are referred to as the source field.

e Bits 5-0 indicate the 3-bit addressing mode field and the 3-bit gener-
al register field. These two fields are referred to as the destination
field.

Byte Instructions

Byte instructions are specified by setting bit 15. Thus, in the case of
the MOV instruction, bit 15 is 0; when bit 15 is set, the mnemonic is
MOVB. There are no byte operations for ADD and SUB, i.e., no ADDB
or SUBB.

43

INSTRUCTION SET

PROGRAM CONTROL INSTRUCTIONS

Branch Instructions
Mnemonic Instruction

Branch
BR branch (unconditional)
BNE branch if not equal (to zero)
BEQ branch if equal (to zero)
BPL branch if plus
BMI branch if minus
BVC branch if overflow is clear
BVS branch if overflow is set
BCC branch if carry is clear
BCS branch if carry is set
Signed Conditional Branch
BGE branch if greater than or
equal (to zero)
BLT branch if less than (zero)
BGT branch if greater than (zero)
' BLE branch if less than or
equal (to zero)
SOB subtract one and branch (if not = 0)
Unsigned Conditional Branch
BHI branch if higher
BLOS branch if lower or same
BHIS branch if higher or same
BLO branch if lower

Instruction Format

15 8 7
— '\

kO

OP CODE f T
BYTE OFFSET-

Figure 4-3 Branch Instruction Format

eThe high byte (bits 8-15) of the instruction is an op code specifying
the conditions to be listed.

®The low byte (bits 0-7) of the instruction is the offset value in words
that determines the new program location if the branch is taken.

44

T

INSTRUCTION SET

JUMP AND SUBROUTINE INSTRUCTIONS
Mnemonic Instruction
Jump & Subroutine

JMP jump
JSR jump to subroutine
RTS return from subroutine

Instruction Format

JSR Format
‘ ‘ Rn | MODE | a Rn J
]
NG 5 8 6,5 4 3 2 0,
op copf——— 1 J]
LINKAGE POINTER

DESTINATION ADDRESS

Figure 4-4 JSR Instruction Format

e Bits 9-15 are always octal 004 indicating the op code for JSR.

eBits 6-8 specify the link register. Any general purpose register may
be used in the link, except R6.

eBits 0-5 designate the destination field that consists of addressing
mode and general register fields. This specifies the starting address
of the subroutine.

eRegister R7 (The Program Counter) is frequently used for both the
link and the destination. For example, you may use JSR R7, SUBR,
which is coded 004767. R7 is the only register that can be used for
both the link and destination, the other GPRs cannot. Thus, if the link
is R5, any register except R5 can be used for one destination field.

RTS Format

OP CODE 4 }
LINKAGE POINTER

Figure 4-5 RTS Instruction Format

The RTS (return from subroutine) instruction uses the link to return
control to the main program once the subroutine is finished.

e Bits 3-15 always contain octal 00020, which is the op code for RTS.
o Bits 0-2 specify any one of the general purpose registers.

45

INSTRUCTION SET

e The register specified by bits 0-2 must be the same register used as
the link between the JSR causing the jump and the RTS returning
control.

Interrupts and Traps
Mnemonic Instruction

EMT emulator trap

TRAP trap

BPT breakpoint trap

10T input/output trap
RTI return from interrupt
RTT return from interrupt

There are three ways of leaving a main program:

e software exit — the program specifies a jump to some subroutine

etrap exit — internal hardware on a special instruction forces a jump
to an error handling routine

ejnterrupt exit — external hardware forces a jump to an interrupt
service routine

In all of the above cases, there is a jump to another program. Once
that program has been executed, control is returned to the proper
point in the main program.

MISCELLANEOUS INSTRUCTIONS
Mnemonic Instruction

HALT halt
WAIT wait for interrupt
RESET reset UNIBUS
MTPD move to previous data space
MTPI move to previous instruction space
MFPD move from previous data space
MFPI move from previous instruction space
MTPS move byte to processor status word
MFPS move byte from

processor status word

CONDITION CODE OPERATION

Mnemonic Instruction
CLC,CLV,CLZ,CLN,CCC clear
SEC,SEV,SEZ,SEN,SCC set

46

INSTRUCTION SET

There are four condition code bits:

e N, indicating a negative condition when set to 1
eZ, indicating a zero codition when set to 1

eV, indicating an overflow condition when set to 1
e C, indicating a carry condition when set to 1

These four bits are part of the processor status word (PS). The result
of any single operand or double operand instruction affects one or
more of the four condition code bits. A new set of condition codes is
usually created after execution of each instruction. Some condition
codes are not affected by the execution of certain instructions. The
CPU may be asked to check the condition codes after execution of an
instruction. The condition codes are used by the various instructions
to check software conditions.

Z bit — Whenever the CPU sees that the result of an instruction is zero,
it sets the Z bit. If the result is not zero, it clears the Z bit. There are a
number of ways of obtaining a zero result:

e adding two numbers equal in magnitude but different in sign
ecomparing two numbers of equal value

eusing the CLR instruction

N bit — The CPU looks only at the sign bit of the result. If the sign bit is
set, indicating a negative value, the CPU sets the N bit. If the sign bit is
clear, indicating a positive value, then the CPU clears the N bit.

C bit — The CPU sets the C bit automatically when the result of an
instruction has caused a carry out of the most significant bit of the
result. When the instruction results in a carry out of the most signifi-
cant bit of the result, the carry itself is usually moved into the C bit.
Otherwise, the C bit is cleared. During rotate instructions (ROL and
ROR), the C bit forms a buffer between the most significant bit and the
least significant bit of the word. A carry of 1 sets the C bit while a carry
of 0 clears the C bit. However, there are exceptions. For example:
eSUB and CMP set the C bit when there is no carry.

eINC and DEC do not affect the C bit.

e COM always sets the C bit, TST always clears the C bit.
V bit — The V bit is set to indicate that an overflow condition exists. An
overflow means that the result of an instruction is too large to be

placed in the destination. There are two methods the hardware uses to
check for an overflow condition.

One way is for the CPU to test for a change of sign.

47

INSTRUCTION SET

eWhen using single operand instructions, such as INC, DEC, or NEG,
a change of sign indicates an overflow condition.

eWhen using double operand instructions, such as ADD, SUB, or
CMP, in which both the source and destination have like signs, a
change of sign in the result indicates an overflow condition.

Another method used by the CPU is to test the N bit and C bit when
dealing with shift-and rotate instructions.

e|f only the N bit is set, an overflow exists.

e|f only the C bit is set, an overflow exists.

e|f both the N and C bits are set, there is no overflow condition.

More than one condition code can be set by a particular instruction.

For example, both a carry and an overflow condition may exist after
instruction execution.

CONDITION CODE OPERATORS

T
[0 0 2 4‘ ‘N|Z|V|CI
| L L | s " 1 I

Figure 4-6 Condition Code Operators’ Format

Instruction Format

The format of the condition code operators is as follows:

eBits 15-5 — the “op” code

eBit 4 — the “operator” which indicates set or clear with the values 1
and 0 respectively. If set, any selected bit is set; if clear, any selected
bit is cleared.

eBits 3-0 — the “select” field. Each of these bits corresponds to one of
the four condition code bits. When one of these bits is set, then the
corresponding condition code bit is set or cleared depending on the
state of the “operator” (bit 4).

EXAMPLES
The following examples and explanations illustrate the use of the
various types of instructions in a program.

Single Operand Instruction Example

This routine uses a tally to control a loop, which clears out a specific
block of memory. The routine has been set up to clear 30gbyte loca-
tions beginning at memory address 600.

(RO) = 600
(R1) =30

48

T

INSTRUCTION SET

LOOP: CLRB(R0)+
DEC R1
BNE R1
LOOP
HALT

Program Description
eThe CLRB (R0)+ instruction clears the content of the location speci-
fied by RO and increments R1.

o R0 is the pointer.

eBecause the auto-increment addressing mode is used, the pointer
automatically moves to the next memory location after execution of
the CLRB instruction.

eRegister R1 indicates the number of locations to be cleared and is,
therefore, a counter. Counting is performed by the DEC R1 instruc-
tion. Each time a location is cleared, it is counted by decrementing
R1.

eThe Branch If Not Zero, BNE, instruction checks for done. If the
counter is not zero, the program branches back to start to clear
another location. If the counter is zero, indicating done, then the
program executes the next instruction, HALT.

Double Operand Instruction Example

This routine prints out a portion of a payroll program for review by the
supervisor. It is known that 76 locations are to be printed and the
locations start at address 600.

INIT: MOV #600, RO
MOV #76, R1

START: MOVB (R0)+, 170
DEC R1
BNE START
HALT

Program Description

eMOV is the instruction normally used to set up the initial conditions.
Here, the first MOV places the starting address (600) into RO, which
will be used as a pointer. The second MOV sets up R1 as a counter
by loading the desired number of locations (76) to be printed.

eThe MOVB instruction moves a byte of data to the printer (I/0) for
printing. The data comes from the location specified by RO. The
pointer RO is then incremented to point to the next sequential loca-
tion.

49

INSTRUCTION SET

e The counter (R1) is then decremented to indicate one byte has been
transferred.

e The program then checks the loops for done with the BNE instruc-
tion. If the counter has not reached zero, indicating more transfers
must take place, then the BNE causes a branch back to START and
the program continues.

eWhen the counter (R1) reaches zero, indicating all data has been
transferred, the branch does not occur and the program executes
the next instruction, HALT.

Branch Instruction Example
NOTE: Branch instructions are limited from
+177to —200,words.

A payroll program has set up a series of words to identify each em-
ployee by his badge number. The high byte of the word contains the
employee’s badge number, the low byte contains an octal number
ranging from 0 to 13 which represents his salary. These numbers
represent steps within three wage classes to identify which employees
get paid weekly, monthly, or quarterly. It is time to make out weekly
paychecks. Unforunately, employee information has been stored in a
random order. The problem is to extract the names of only those
employees who receive a weekly paycheck. Employee payroll num-
bers are assigned as follows: 0 to 3 — Wage Class | (weekly),4t0 7 —
Wage Class Il (monthly), 10 to 13 — Wage Class il (quarterly).

600 is the starting address of memory block containing the employee
payroll information. 1264 is the final address of this data area. The
following program searches through the data area and finds all num-
bers representing wage class |, and, each time an appropriate number
is found, stores the employee's badge number (just the high byte) on a
“last-in/first-out” stack which begins at location 4000.

INIT: MOV #600, RO
MOV #400, R1

START: ~ CMPB(RO)+,#3
BHI CONT

STACK: MOVB (R0),—(R1)

50

INSTRUCTION SET

CONT: INC RO
CMP #1264, RO
BHIS START

HALT

Program Description

® R0 becomes the address pointer, R1 the stack pointer.

e Compare the contents of the first low byte with the number 3 and go
to the first high byte.

e |f the number is more than 3, branch to continue.

elf no branch occurs, it indicates that the number is 3 or less. There-
fore, move the high byte containing the employee’s number onto the
stack as indicated by stack pointer R1.

e R0 is advanced to the next low byte.

elf the last address has not been examined (4264), this instruction
produces a result equal to or greater than zero.

e|f the result is equal to or greater than zero, examine the next memo-
ry location.

INSTRUCTION SET
The PDP-11 instruction set is presented in the following section. For
ease of reference, the instructions are listed alphabetically.

SPECIAL SYMBOLS

You will find that a number of special symbols are used to describe
certain features of individual instructions. The commonly used
symbols are explained below.

SYMBOL MEANING

MN Maintenance Instruction

SO Single Operand Instruction
DO Double Operand Instruction
PC Program Control Instruction
MS Miscellaneous Instruction

51

INSTRUCTION SET

CcC Conditioh Code

() Indicates the contents of. For example, (R5) means
“the contents of R5.”

src Source address

dst Destination addi'ess

-« Becomes, or moves into. For example, (dst) < (src)

means that the source becomes the destination or
that the source moves into the destination location.

(SP)+ Popped or removed from the hardware stack
—(SP) Pushed or added to the hardware stack

A Logical AND

v Logical inclusive OR (either one or both)

v Logical exclusive OR (either one, but not both)
~ Logical NOT

RegorR Register

B Byte

NOTE: Condition code bits are considered to be
cleared unless they are specifically listed as set.

52

‘pawJoyiad s uonippe Juswa|dwod s,g
*P8199}JE 10U BJB 824N0S 8Y} JO SIUBUOD
8y] '1SO| 84€ UOljeul}Sap ay} JO SJUUO0D

}nsalay} jo qued
-ijlubis ysow ayy wouy
Aled e s|a18ylj118s D
ubis aysod
-do ay} Jo s1}nsal ay}
pue ubis awes ayy jo
asam spuesado yjoq ‘st
jey} ‘uonesado ayy jo
}jNSaJ B SB MO|}J9A0 9|

[euiblio 8y ‘sseippe uoieunsap ayy -1J9WyNJe S1 812U} J1 18S A
e }jnsal 8y} saJoj}s pue puesado uojeu 0 = }nsaiji18s 7 ppY
-I1sap ay} 0} pue.Iddo 32.1n0S Y} SPPY 0>1nsaiy1es :N (1sp) + (04s) — (i1sp) aasseo oda aav
L = O pue
"ynsai Jep.io LLL2/181(isp) 188 D
yb1y ayj ojui paLiIed aq 0} SalAq/Spiom | =Dpue
1apJo mo| 8u} Jo uolppe dy} 12112081 (1sp) Hies A Ki1ed ppy
wouy A1ied 8y} sywiad siy L ‘uoneunsap 0 =Hnsaiji18s 7 aassol g0av
ayj ojul g O By} JO SIUUOD BY} SPPY 0> 1nsaij118s N O+ (1sp)—(isp) aassoo 0s oav
uonduosag S8p0Y uolIpuo) uonesad apondo adA} uonoN.su|
/2lUoWBU

19§ uononysuj Li-ddd
I-v slqel

53

ail

Junoo
Hiys syl Aq paijioads suq jo lequinu
8y} 1611 pajejol st piomig-g1 Syl
218104 B S8W099q HJ1ys ybu ay) ‘osed
SIY} U] "owWes ay1 8Je duo UM pa-4o
19)s16a1 oy} pue Joisibal ay) ‘Jaquinu
Ppo ue si uasoyo 1aysibal syl Usym
HIYs y9|

e s1 9Aljsod pue }Jiys 1ybu e sy aaneboN
‘1E+ 01 g&— wouj sabuel Joquinu Sty |
‘puesado 821N0S U} JO S}q 9 J9PIO MO|
U] SE Ud) e} S| JUN09 JIys 8y | Junod

(puesado
1g-2€ 8U1 JO N0 payiys
Hq 1SB| 8Y} UM popEO|)

Hius b uaym Hq

HIYs 8y} Ag payioads saw Jo Jaquinu Japao ybiy yum pspeo| 9 (04s) = NN @49ym
8y} 1oy Jo 1ybu payys 8. (Lg-9| sHq) Hiys ayy buninp ‘Wo| 10 3yBu ay3 o} pauiq
d pue (G1-0 SHa) LAY "‘pPIom }ig-gg duo sabueyo Hq ubis y11es A saoe|d NN Payiys -wod YIYs
Se pajeaJ} 84e auo yum pa-yo 191s1bau 0 =)nsaijids :z S| pJom a|gnop ay | olBWYIIY
8y} pue Jo1si6a1 8y} JO SjuSUOd BY L 0> }nsaljies N LAY'Y — LAY'H SSHEL0 oda OHSV
"HIYS Yol e s| dAsod pue Jiys b
e sl oAllebaN "Le+ 01 ge— wouy sebuel 19)s1694 J0 N0 Yiys
Jagquinu siyj ‘puesado 291nos a8y} 11q 1S€| WOy papeo| D
10 S}ig 9 J9PJO MO| 8y} SE ude) S11unod ylys Burinp pabueyo (048) = NN @49ym
Hiys ay] ‘pueitado 82inos ay} Aq pay 191s16au Jo ubis j118s A yaj 1o ybu 0y yius
-109ds sawi} Jo Jequinu ay} Yof 10 Wb 0 =}nsaijiles 7z sooe|d NN Ajjeonsw oneWYILY
paliys aJe Je)siBal 8y} JO SjusIL0d BY . 0> Unseldjldes N -uiue paylys Y — Y SSHcl0 oda HSY
uonduosag S8p0oD uolIpuo) uonesadQ 8po0do adA) uoponJsu|
/91UOWBUA}

Juod ‘}as uononiisul Li-ddd 1-v diqel

54

"1e3J9 SI D JI youeuq

B S8SNBJ PUe }iq D U} JO S1e)S 8y} S1Sa |
‘uonnoaxs uononasui burinp

aouanbes snq 0 1va/dilvad/diLva

B S90p gHSV 92U} ‘Opeul S| 85Ua19)0.
abed /| ue }| "sassaippe Alowaw jo
Buiyoo}48)ul UB SMOJ[E SIY| "UORONLSU]
9y} Jo uoiiod uonndsaxa ayy ui 8dusanb
-8$SNq 01vd/dI1lvad/ILyQ e seop
gHSV 92U} ‘09/1 L-dAdd @y} u| :310N

¢ ha

UOIJBUIISOP dU] JO UOISIAIP paubis swo}
-1ad HSYV "uoleunsap 8y} Jo 1iq J8p.o
MO| 83U} WoJf papeo] s 1q J 8yl "pajed
-1jdau si 1q Japuo ybiy ayy eoe|d suo
Wb uoneunsep BY} O SIq ||’ SHIUS

‘uoljedipul mojy

-19A0 Ylim g AQ uoneunsap ayj jo uon
-eoljdiyinw paubis e swiopad Sy ‘uon
-BU[ISSP 8Y} J0 1iq JapJo ybiy ayy wouy
pepeo| si piom sniels 8yl Jo 1q 9 8yl "0
B YliMm papeoj Si }ig 48pJo moj| 8y] "eoeid
BUO 18] uoleunsap 8yl Jo suq jle sHIys

paloayeun
paloayeun
pajoayeun
pejosyeun

uoneunsep a8yl joiq
19pJ0 MO| WO} Papeo|
(uoneisado Yiys

ay} jo uonadwod ay}
Aqies se)uq O pue g
N 841 JO HO aAIsnjoxa
8y} wouj papeo|

0 = Unsai 8y} ji1es
(0> uns

-81) }8S S1}|nsal 8y} Jo

Hq Japio ybiy sy p1es :

uoljeu
-1}S8p 9y} JO }q J9pIO
ubiy aui yum papeoj
(uonesado

Hlys 8y} jo uoye|dwos
8y} Aq 1es se) Hq O pue
HO N @Y1 0 YO dAIs
-NjoXa 8y} YUm pepeo|
0 = HNsa1 8y} J118s

0 > 1nsai 8y}

40 11q Jepo ybiy J118s :

ZN3>0

G

N>

s

N>

0=9
J1 (19810 X 2)
+0d—>0d

Wb ayy
0} 99e|d auo payiys
(3sp) — (3sp)

us|ayl
0} 99e|d auo payiys

(isp) — (1sp)

000€01

adeoot
aaesoo

aaeoot
aaesoo

od

oS
oS

0os
(O}

1ea|o A1reo
jiyoueug
004

Wby YIys
aneWyIIY
g4dsy
ysy

TR RTINS
onewyy
a1sy
ISV

55

'}INSa4 0 B UO ydueiq B S8sned
os|e 3og "siequinu aAisod om} 0} uop
-Ippe pesnes jey) uonelado ue SMoj|o}

}l UBYM ydueiq B sasned skeme 3og paosyeun 9 |enbas Jo
‘snyy "17g oy uonesado Aiejuswald pajoayeun A 0 = AAN uey} Joyeaub
-Wod 8y} sl 3Hg "18s Y10q o Jes|o yjoq pajosyeun 7 J (1880 X 2) jiyoueig
18ylle 8Je A pue N Jl youelq e sesned pajosyeun N + 0d—>0d 000200 Od 399
‘0 sem uonelado
snoiAald ay) Jo }nsal sy} Jeyy 1s8} 0} ‘Aj
-lesauab ‘pue ‘uonesado 1|g e Buimojjoy
99IN0S 8y} Ul }9S OS|B 8J9M UOfBUI}SOP
8y} Ul }8s s}q ou Jey} 1sa) 0} ‘uonesado pajoayeun 9
dIND e Buimoj|o} Aljenba 1sa8)} 0} pasn pajoayeun A L=7Z lenba
S|} ‘ojdwexa ue sy 189S S| Z §l youeuiq pajosyeun 7 J1 (19sh0 X 2) Jyoueug
B $3sSned pue }iq Z 8y} JO leis sy} sisa L psjoayeun N +0d—>0d 00%100 Od 03g
‘uon pajosyjeun D
-eijodo snoiraid e Jo }nsal ay} ul A1ed pajoayeun A 1=9 1os Aued
B 104188} 0} pasN '18s S| D JI youeuq pajosyeun 7 # (198140 X 2) Jyoueuqg
B sasneod pue iq J 8y} JO 8ie)s 8y} §1s8 | pajosyeun N + 0d—0d ooveot Od S04
uonduosaeq SOpPOH uonIpuon uonesadQ apoodo adA] uononasu|
/OIUOWBUN

"Juod ‘Jog uondnysu| Li-ddd v 2qeL

56

‘paJies|od s1 9 ji youeuq
B S9SNEd puE 1iq O 8y} JO 81B)}S 8y} 5150

‘uoneunssp

ay} uey} anjea paubisun Jaybiy e sey
20.nos ay} se Buo| se suonesado (dND)
uoisisedwod uj uaddey |jIm Siy] "yns
-81 (B JOou A1IED B JBY}IBU SBsSNed Uoj}
-eiado snoinaud ay} ji youeiq e sasne)

*(MO[}18A0 INOYLM) O

sem uoljesado snoinaud ay} Jo }nsal ayy
JI youe.q B 8SNE9 JOU S30pP 1 Hg "uol}
-eulsap annebau pue 8sinos aalisod

e uo Bupesado uononaisul dND B SMO|
-|0} Yl USYM YdUEB.(q B SBSNED JaAdU | ©Yg
‘18Yling *(pa1indd0 MOJHIBAQ }J| UBAS)
uojjeunsep aAl}isod B pue 824N0S dAl}
-ebau e uo bunesado uononasul 4D
B SMOJ||0} Ml JI ydueiq B SBSNed skem|e
199 ‘Jeinoied u| 'paiindd0 MO|LIBAO

J1 UBA® ‘slaquinu aAlje6BU oM} pappe
eyl uolesado ue Buimojjo} sayoueuq
skemfe 19g ‘snuL ‘| sISHg A pue N 2y}
10 HO anIsnjoxa a1 1 youeiq € sasne)

pajoageun
paloayeun
paloayeun
pajoayeun :

pejosyeun :
pajoayeun
pajoayeun
pajoayeun :

pajosyeun
pajoayeun
paloayeun
peloayeun :

ZN3>0

0=Zpueg=9

ZN30

57

0=(AANAZ

ZN>0

iin

*904N0S
ayl U] Je9|d 8Je UOIIBUIISOP BU} U] 18S
aJe jeyy siq Buipuodsaiiod ayy Jo Aue
J9Y}9yMm }s9} 0} pasn aqg Aew uononJis

-ul 11g@ 8yl ‘paloayje ale spuetado uoi} pajodyje jou D
-BUI}SOP JOU 921N0S Y} JoylieN "Ajbul pa1es|d A
-pPJ0OoE SOPOI UOIIIPUOD SAlIPOW pue 0 =1nsai1jl18s 7 1s91 g
spuelado uoljeulISap pue 824n0s ay} 19s }|nsau aasset allg
J0 uosiredwod QNYV [eo160] swiojiad 40 Mg JepJo ybiy j11es N (018) v (1sp) aasseo od g
'}S0O| ©Je UojjeUl}SOp 3y} JO
SJUSJUO0D Y] "UOileUNISAP B} Ul 189S S}q pajoaye iou D
Buipuodsalilos 9| ‘ssalppe uoieul} paies|o A
-Sap U} 1B }Nsal 8y} SOABD| pUB SpueId 0 = }nsaJljl1@s 7 1©s Hug
-do uolleujisap pue 82.n0s 8y} UsaMIaq 19s }|nsal aassst asig
uonelado HO SAISN|OUI SWIolISd jouq Jep1o ybiy y138s N (¥sp)A(04s) > (3sP) aassso od sig
‘pojosjeun pajoayeiou D
9Je 92.N0S 8] JO S}USUOI 8Y] '}1SO| 84 paJtes|o A
UOIBUIISOP BU} JO Sjusluod [eulblio ay | 0 =1nsaij18s 7 le9|n ug
*90JN0S 3y} Ul 1] 18S B 0} Spuodsa.tlod 19s j|nsal (1sp) aassyt ao1g
ey} uonjeullsap 8y} Ui Hq yoes s1es|9 0 Hq Jepio ybiy y118s N V (218) ~ — (1sp) aassyo od olg
“uonduiosaq SOpODH UoHpuo) uonesadQ apoNdo adA) uononasu|
/OIUOWBU

"Ju0d ‘Jag uoonnsu| Li-dad i-v 3iqel

58

Hq

Doyl joisaysjduwis e Aq ,18yb1y,, pue
Lowes 10 1aybiy,, 10§ paysay aq 0} uol}
-onJAsul 4iND 94} yim sanjea paubisun
Jo uosedwo) "uoneunsap ay} ueyl
anjeA paubisun Jamoj e sey 1o o} jenba
S| 924nos ay} se buoj se suopeiado uos
-1yedwod ul sINd20 youeiq a8yl |Hg O}
uonesado Atejuswajdwod ayy st SO19
‘}jnsau Q e 10 A11eD B J18Y}I8 pasnes uol
-elado snoinaid 8y} Ji youeuq e sasnen

. ‘uon

-eJado snoinaud e Jo }nsal ay} uj A1ued
B 10} 1S9 0} pas("18s sl O}l ysue.iq

B S9SNED PUE }iq D 98U} JO 81e)S 8y} S}S8]

*(MO|}1aA0 JNOYHM)

0 sem uofjesado snoiraid sy} Jo }nsal
8y} Jl ydueiq e 9SNED J0U SB0P J g "Uon
-eulisop aAnebau pue 901nos aAlisod
e uo Buriesado uononisul JiND B SMO|
-|0} Jl UBYM ydueI(B SBSNED J9ABU 319
‘19ypn4 *(paJind20 MOJJIBA0 }I UBAS)
uoneuISap SAIHSOd B pue 82.N0S 9Al}
-ebau e uo Buneisado uononisul WD
B SMOJ||0} }l §l youe.d B S8SNed skeme
379 “4ejnoiied uj "palindo0 MOIBA0

JI UsA@ ‘siaquinu annebau om} pappe
1ey) uoneiado ue Huimoj|0} sayouelq
sAem|e 3719 ‘snyL | SISHQ A Pue N 8y}
JO HO 9AISN|OXa 8y} §I youeuq e sasne)

psidayeun :

pajosyjeun
pajoayeun
paloayjeun

paloayeun
paloayeun
pajoayeun
paloayeun

paloayeun
pajoayeun
paloageun
paloayeun

ZN3>0

ZN3>0

ZN350

L =2ZA0
#1 (19840 X 2)
+90d—>0d

1=0
J(1dsyo x 2)
+0d—0d

L = (AVN)AZ
(Jesyo X 2)
+0d—0d

awes 10
18MO|

31 youeug
so1d

19MO|
jyoueug
o1g

0}

lenba Jo ueyy
sS9|
Jyoueug
319

59

‘uonesado snoirsad pajosyeun
8y} Jo }nsal 8y} jo (3q Juedyiubis ysow) paoayeun A 1=N snujw
ubis au3 1s8) 0} pas('18s sI N Jl youeuq psjosjyjeun 7 # (198140 X 2) jiyoueug
B $8sned pue iq N 8y} Jo 81eis 8y} s1s8 | pajosyeun N + O0d = 0d 0000} Od ING
*(MO|J4BA0 JNOYUM)
0 sem uonesado snojaaid 8y} Jo }nsal
8y} Jl youelig B 9SNED JOU S90p | 1g "uon
-BUiSap aAnebHau pue 994nos aapisod
e uo Bupesado uondniisul N0 B SMOJ
-0} § UBUM UOURBIQ B S8SNEBD JBABU |19
‘Jaypnd (Pa.indd0 MOJJIBA0 }i USAS)
uofjeur}sap aAllisod B pue 82INn0S A1}
-ebau e uo Bupesado uononiisul JIND
B SMOJ|0} M JI YOURIQ B SOSNED sAem|e
1719 “lenoned uj *palind20 MOJJIBA0
JI UBAS ‘siaquinu dAllebau om} pappe psjosyeun 9
Jey} uopesado ue Buimojjo} seyoueuq pajoayeun :p L =AANH uey} ss9|
sAemje (g ‘snyL "1 SIslg A PUe N 8y} paosyeun 7 (19syo X 2) Jlyoueug
40 HO 9AISN|oxd 8y} JI ydueuq e sesned payoayeun N +0d—>0d 00200 Od 119
uonduossq S8pPOH UORIPUOD uonesadQ 8poNd0O adA] uononJsu|
/olUoWaUN

‘JU09 ‘}8s uonoNIsu| Li-ddd L-v @iqel

60

‘SAg 0} uonesado Arejuswajdwod
8y} st DAG "1e8jo s1 1iq A 83Ul Ji youeuq
© Sasned pue }ig A 9y} JO 81e}S 8y} S1S8 |

‘youeuq [euolpuoOdUN
Uy "uOONJISUl PIOM BUO B UJIM SPIOM
.21+ 018zl — jo abuel e ulyym |013U0d
weiboud Buliisjsue.y jo Aem e sapiroid

*9}Aq

MO] 8y} U] palliWISue} S| UOBULIOJUI ON
‘spie Buibbngap asauy Japun uni swelib
-04d ul £00000 9p0o2 Huihojdwa jsujebe
pauopineo si 4asn ay] ‘spie buibbng
-ap ||ed 0} pas("{| JO SSaIppe 10}08A
deu} e yum aosuanbas deuy e sw.iopad

‘IINg 10 uopesado Aiejuswsd
-Wwo9 8y} Si 1dg "1esjo SI N JI youeliq
B S8SNED PUe }ig N 8Y} JO a)els 8y} S)sa |

*0 Jou sem uofesado snoinaid ayy Jo yns
-84 8y} ey} 1sa} 0} ‘Ajjesauab ‘pue ‘1|19

e Buimo||o} ‘901Nn0S 8y} U] 0S| 819M Uol}
-BUI}SBP 8y} U] }8S S}Iq BWOS JBY} }S8} O}
‘dIND e Buimoyjoy Ayllenbaul }se) 0} pasn
s1}| 'D3g 0} uonesado Areyuswajdwod
8y} sl INg "Jes|d s11iq Z 8y} §l youeuq

B S9SNED PUE }iq Z Y} JO 8)e)S Y} S1S8 |

pajoayeun :
pajoayeun :

pajoajjeun

pajoayeun :

pejoayeun :
pajoayeun :

pajoajjeun

pajosjjeun :

10}

-00A deu) wouj papeoj :

10}

-08A deuy Wouy papeo| :

10}
-09A deJy woly papeo|
10}

-09A deJ) wouy papeo] :

peoayeun :
peoayjeun :

pejoayeun

peloayeun :

pejoayeun :
peosyeun :

pejosjeun

paidayeun :

ZN>0 z2ZN30

ZN>0 z N > O

ZN>0

0=A
(188140 X 2)
+0d—>0d

(1@syo x 2)
+0d—0d

(91) —>sd
(1) —>0d
od—> (dS)—
Sd— (dS)—

0=N
(1esyo x 2)
+0d—>0d

0=2
J (1980 X 2)
+0d—90d

000cot

00000

€00000

00000}

000100

1e9|9
uq

Ay ydueug

Od ong

youeug
Od ddg

des}
wiodyeaig
Od 1d9

snid
jyoue.g
Od 1dg

lenba jou
jiyoueug
Od 3INg

61

1

‘0=tvuaysuq

Bujpuodsaiiod sies|) "L e Sl Uq J ‘S 10 ‘2 ‘| ‘0 g Aq payioads g 8y} s}es 9| ‘iojesado
89U} JO }Iq Jes|o/18s 8y} ‘¥ 1q Jo asuas ay) o} Buipiodde payipow aJe (g-0 sHq) Jojesado
P09 UOHIPUOD 3y} Ul SHq 0} Buipuodsaiiod sjiq 8pod uonipuoy) “1dyiaboy 18s 1o paies|o

N 88|10
aq Aew s1iq 9S8y} JO SUOIBUIGWIOD 9](B}OD|9S "SI SPOI UOIIPUOD SIBS|D pUe S} 052000 20 N1D
‘0=t HqHsHUq
Buipuodsali0o sies|) | B SI ¥ Hq J ‘S 10 ‘g ‘L ‘0 Mg AQ papioads jiq ay) s}es “'a°| Liojesado
8y} JO 11q Jes|2/19s 9y} ‘¢ 11q JO asuas ay} 0} Buip.ioooe paljipowl aJe (g-0 sHq) Joyesado
9p09 UOIIPUOd Y} Ul S} 0} Buipuodsaii09 s}iq 8pod uoiipuo) "18y}abo} 18s 1o pases|d D Jes|n
80 Aew s}1q 88y} JO SUOIIBUIGIOD B|(R}O|S "SHJ 8POJ UONIPUOD SIBs|d pue S19g L2000 00 010
‘0=tvuqisuq sHq
Buipuodsaii00 sied[) | B Sl Hq Jl ‘g 10 ‘g ‘| ‘0 1q Aq pawioads Jiq 8y} sies “a°) ‘iojesado apod
8y} JO 11q 1e9]9/19S 8y} ‘p 1q JO asuas ay) 0} Buipioooe paljipow ale (g-0 siiq) Jojerado uoijpuod
9p02 uolIpUOd By} Ul s}iq 0} Bulpuodsaliod S} 89P0 UOIHPUOY) "18Yy}ab60} 189S 10 paies|o. lle 1es|n
aq Aew s31q 9S8Y) JO SUONBUIQWIOD 3|qB}O8|aS "S}HQ PO UOI}PUOD SIB3|O pue S}9S 152000 20 209
‘uonesado snoiaaid auy pajoayeun 9
Ul MO|JIOA0 J1}9WIY}LIE }08}ap O} pasn S| pajoayeun A L=A 1S g A
SAg 198 S11q A 83Ul §l ydoueliq e sesned pajosyeun 7 # (19sh0 X 2) jiyoueug
pue (MO|}19A0) H{ A JO Slels By} SIS | pajoayeun N +0d—>0d ootveol Od SAg
uonduosaq S8p0ooH uolipuod uoneiado apoodo adA) uononJisu|
/o1UOWBUN

"Ju0d ‘}ag uondnnsu| Li-ddd -t alqelL

62

uns
-89y} 0 }iq Jueopiubis
- 1Sow 8y} wouy A11ed
B S| 318U} I paiead 9
‘UoIoONIISUI Youelq [BUOIIPUOD 1 nsal ay} jo.ubis ay) se
e Aq pamo||o} Ajliewolsno s| aiedwod awes ay) S| UoleunNSsap

Y] "S8pOod uolIpuod ay}11as 0} S| uon ay} jo ubis ayy pue

-oe Ajuo ay | ‘paroajjeun ate spuesado subis aysoddo jo spue
ylog "sayoueuq [euoiypuod esiboj| pue -18do “*9°| {MO|}J9A0 O1 [L + (sp)
ol}dWY}LIe 10) pasn aq uay} Aew ysiym -}Jowyile S| 949y} J119S A ~ + (o48)
‘S9P09 UOIjIPUOd 8y} s}18s pue spuesado 0 =}nsaijlles 7 |ielop ui]
UOI}BUI}SOP pUE 924Nn0S 8y} saiedwo) 0> }nsai}118s N (1sp) — (o1s)
‘0=t HqisUq

Buipuodsailod sies|d "L B Sl ¥ 1 JI ‘€ 40 ‘2 ‘L ‘0 1q Ag palj1oads 1g 8y} s19s o'l tiojesado
8y} JO 1q Jeaj9/18s 9} ‘i 1] JO asuas ay} 0} Buipiodoe payipow aue (g-Q sliq) Jojeiado
9po9 UOIIPUOD 3y} Ul S} 0} Buipuodsaiiod sHq 8pod uoHpuUo) “18Y}ab0} 18s 10 pased|od
aq Aew s}iq 9S8y} JO SUOIJBUIqWOD 8|(B}99|9S "Sliq 8P0D UOIIPUOD SIBd|D pUk S18g

‘0=vUqislq

Buipuodsaliod sies|D "L B S Hq J ‘€ 40 ‘2 ‘L ‘0 Mq Ag payioads }g 8y} sies “9'| liojesado
9y} JO }q JB3J9/18s U} ‘y }iq JO 8suads sy} 0} Buipiodoe payipow aJe (g-0 sHq) Jojesado
8p02 UOIIPUOD 3y} Ul SH] 0} Buipuodsa.i09 sjq 8pod uoipuoy “18y1abo} 18s 10 pases|d
aq Aew s}1q 8S8Y} JO SUONIBUIQLUOD 8|E}O3|8S 'S} 8POD UOKIPUOD SIBd|D PUB S}9S

paJes|d :»
paies|d :A
*$018Z yum paoejdal 8s 7
aJe uonjeunsap payioads Jo sjusuod paJies|d N 0— (isp)

aasscelt
aassco

%2000

¢¥c000

aaosolt
aqaosoo

63

‘UBA® 8q ISNW Y "puspl
-AIp 8y} se ubis awes 8y} Jo S| Japuiewl

pe
-}dwane g dPIAIP J118S 1D
('suq G| pasoxe pjnom
juanonb ay} asnes
-8q payioge si uon
-OnJjsuj 8y} 8se9 siyy
uj) "*22014n0Ss 8y} Jo an
-eA @jnjosqge ay} ueyy
106.e| s| 19)s1601 8y}
JO anjeA aynjosqe ayy

-84 8y} ‘Y ul Y3} sl usponb ayy ‘pue }110°0 = 92IN0S J1 18S A
-18do 92.1n0s 8} Aq PapIAIp S| LAY pue 0 = juanonb jijes :7 (01s)/10d'Y apInIQ
H ul sebajul juswe|dwod s,g Hq-gg 8y L 0 > juanonb jijes N — LAY'Y SSHLL0 od Ald
pajoajjeiou D
000001 sem (1sp) §118s A juswaloeqg
‘uoljeuinsap 0 =M}nsaijiies iz aassol g03a
8y} JO S)USJUOD BY} WO} | SjoRIgNS 0> }nsaJ j118s N 1L — (3sp) — (1sp) aaesoo 0s 03a
188 D
*(pates|d | 0} [enba j1q paJes|d A
yoes pue }as (0} _mzum nq comwv sjusw Qo=}nsaijliss 7 EmEQ_QEOO
-8]dwod [ed1bo| 118y} Ag ssaippe uon 0 =¥nsaijouq aaisol ano9o
-BUNISSP BU} JO S1USU0D 8y} saoe|dey weoyiubis Jsow 1188 N (3sp) u— (1sp) aaisoo (o] W02
uonduosaqg S9pOH uoIpuon uonesado apoodo adA] uononsuj
/o1uowaup

Juod ‘}a§ uononiisu| Li-ddd L-v 3iqeL

64

€0/} Uo pasn

a/v—>Vv

‘payonolun Y| st }oels ayy

‘019z 0} [enba s| (Juswinbie g) J0SIAIP
ay} §| “oess ay} uo uopisod yuswnbie
\/ U} Ul }jnSaJ 8y} $8.101S pue jusw
-nBie g ay} Aq uawnbie y 8yl SSpIAIQ

€0/ 1L Uuo pasn

ga+v—>V

‘uoljesado auyy 10}

J81ui0d >oeys 8yl se pasn s Y Joysibas
|elJauan “yoels ay} uo uopisod yuswinb
-Je \y 8y} U1 }|NSal 8Y} S8.10}S pUe Jusw
-nB.e g ay} 0} Jusawnbue y sy} sppy

"asn [e1auab 10} papusWILIOdaL J0U 810}
-219yj} S| pue 8JBM}OS WI)SAS Y LIDIA
Aqg Ajuenbauy pasn si | AT :uonne)

*Z€ SSalppe 1B PIOM Y} WO}
uael si (Sd) snieis J0ssao0.4d [eljusd
MBU 8y} ‘0E SS8IPPE JB PIOM By} WO}

uae) sl Dd Mau ay] "0g ssalppe ie

S1 | INT 10} Joyoan dedy ay | “(pawliopiad
aq 0} uonouny “6'8) sunno. Bunejnwe
8y} 0} UOlleW.IOU| JIWSUR) O} pasn 8q

Aew pue suononnsul 1 N3 8J4e LLev0L
01 00010} WO} s8pod uonesado ||y

paies|d

peJtes|d
0 = 1Nsa1 J1 18s
0> Unsai jies

paJes|o

paJealo :

0 = }Insai j1 }8s
0 > ynsal }l 18s

10}
-08A deusy wouy papeo|
10}
-09A deu} wo.y papeoj|
10}
-08A deJ} wouy papeo|
10}

-09A deJj woJj papeo) :

0

o)
A
V4
N

00—
[9+(d) v+ ()]
as|9

‘gz1-C Z }NSal
#lz+@) (W]
/[9+ () 'y +(4)]

—>

[9+(1)'v+(d)]

0—>
[9+(0)' P+ ()]
as|e
MmNTN < ynsal
Hfg+H)W)]

+
[9+(d)' P+ ()]

-

[9+(1)' 7+ ()]

(ee) > sd
(0g) >0od
Ood > (ds)—
8d—(ds)-

He0G.0

H005.20

000101

dd

dd

od

apIA

-1 Buneol

Alad

ppyv Buneold

aavd

dei)
Joyeinw3g
1N3

‘€0/L1 Uo pasn
a-vV—>V

00—
[9+(H)'7+(d)]
asfe

‘gz1-2 Z)Nsau
Hg+ (W) (W]

pates|o :H -
“}oels ay} uo uonisod Juawnbie paJtes|d A [9+ (W) v+(W)] joeiIQNS
Y 81 Ul }jnsal 8y} Sa4031s pue juswnbie 0 =}nsaijl}es 7 - Buneoly
V 8ul wouy Juswnbie g sy s1oeaqng 0> }nsa1 41198 N [9+(d)v+(d)] H10S20 dd ans4d
00—
[9+ () v+(4)]
N E
. ‘gz1-C S Ynsau
B0/LL topesn W G2+ () ()]
gXV—>V paies|d 0 %
joels 8y} uo uopsod juswnbue paiesjd A [9+(d) v +(d)] Adniniy
Y 8y} Ul }Insal 8y} S8.10)s pue Juawnb 0 =ynsaijies :7 - Buneo|4
-1e g sy} Aq uswnbue v oy} saldninpy 0> Unsai}i19s N [9+(d) v+ ()] H20S.0 dd NS
~uonduosag S8p0o) uonRipuon uonesadQ apondO uononujsu|
e JolUoWau

"Ju0d ‘jos uoyonsu| Li-dad L-v siqel

66

‘81Aq

MO| 9} Ul palIIWSUBI] S| UOliBULIOJUI ON
‘weysAs Bunesado ysip ay} ul Buiiod
-84 10119 10} pue Wa)sAs asemyos ade}
1aded ay} ul X0l ulinod aAlnoaxa Q/|
3y} |[ed 01 Pas("0g JO SSaIppe J0}09A
deJ; e yym aouanbas deuy e swiopad

‘uon

-BUIISOP 8y} JO S}USIUO0D 8} O} | SPPY
‘awinsal o} uon

-eJ9d0 10s$900.d S9SNED B]0SU0D B}
uo A8y anuiuod ay} Buissaid ‘panosxe
2q 0] uoidNIISU| IXau dyy 0} syulod Od
oy] "Ajolelpawiwi pajeululIs} 81e SNg
-INM 8U} Uo sJiajsuel] g snid uoionns
-ul 1TVH 9U1 Jo ssaippe oy} Aedsip
s1ybi| elEp 8]0SU0D By] "10S$800.1d B}
4O]0J3u0D UBAID S| 8|0SU0D 8Y | "9SEBD
0] uonesado 10ssa204d 8y} sesned

10}

-08A ded) wouy papeo] :

10}
-08A deu} wouy papeo]
10}09A

deJ} wouy papeo|

10}

-08A deu} wolj papeoy

paloayje jou
11110 Semisp jl18s
0 = }nsaijlles

0> Hnsaijl}es .

pajoayeun
paloayeun
paoeyeun
peloayeun

3 Z N

Z N

0
‘A
4
‘N

(z2) > sd
(02) > od
Od— (dS)—
Sd—>(dS)—

L + (1sp) = (1sP)

desLo/l
00000 od o ®

1uswaiou|
aaesot gONI
aazsoo 0s ONI
000000 SW 11vH

‘ssaip
-pe ppo ue woJj uoRdNIISUl Ue Yo)3} 0} sidwa)
-} 10s$9204d 8y} USBYM }NS3J [jIMm UOIIPUOD
deJsy 10119 Asepunoq y -ssaippe paisaq
-WNU UdAd UB WOJ) PaYd}a) aq SN a10jaidy)}
pue ejep PIOM dJe SUONONIISU| Jey) BJON I8}
-siba. payioads ay) uy pjay ssaippe sy} 0} petis}
-suel} 8q 0} |0.3u0d weiboid asned |jim pue jebs)
S| apow paisayep Jta)sibay ('usisibal e 0} palis)
-SueJ}8qlouued joJjuod weiboid) "uoinipuos
uononuisul [ebsjjl ue asneo |jIm § spow yum dwnf
B JO uoinoax3 "0 apow J4a)sibai Jo uondaoxe sy}
yum sepow Buissaippe 8y} jo ANIQIxal} (In} 8y}
UM paysiidwoooe aq ued pue (uoneywi abue
ou) Alowaw uj uoieso| Aue 0} palisjsuel} aq Aew
|01)U0D "SUONONIISUL YyouRIq UBY} JOMOIS 1l SaXBW

USIUM ‘pPIOM PUODSS B B}eIaUSB SB0p JINF ‘Suon pajajeun g
-OnJisul youeuq aJe se®gog— puedz/ |+ o} pawi pajosjeun A
10U S| } "UOBONJISU] YDURIG BY) Yim papiroid uey} pajosyeun 7 dwnp
Bujyoueiq weiboid ajqixay; a1ow sapiroid N pajosjeun N (1sp) > 0d aatooo od dir
uonduosaqg S8p0H uopuo) uonesadQ apondo adA] uononJsuj
/oluoWwBupy

"JU09 ‘}ag uonanansuj Li-dad L-v 2iqel

68

‘p ss8Jppe 40}
-0aA ded} 8y ybnoays deuy e pue uononsisui [ebaj|i
ue ul }nsal |[Im 0 Spow YSI B ‘09/LL-ddd 8ul U

‘Ppe Se Yyons suoponsul ajesado uey) [elisep

JO SS8| [9A3] BUO A]9AIIO8YD SI SIYL ‘001 UONRI0|
1B aunnoigns B ssadoe [IIM (001 = (1Y) a19um)
LY Jo)sibal [esauab 10} | Spow uoneuUNSep Ul S
e ‘a|dwexa 10} ‘sny] ‘Y ‘19unod weiboid ayy
peoj| 01 pasn s| ssaippe aul NIl Pue YSr yioq uj
‘19181691 BIIXD

ue JO 8sn 8y} SAABS Od ‘HSI 'si9jeweled Hwsuel)
1By} S||eD auilnoiqns 10} 8|qe}ins ||ED aulinoJ
-qns | |-ddd 8y Jo 8sed [e1dads e S| 1sp "Od HSI

‘|joA8| Aue 0} pasooud ued
(Bunsau pajjes) ssaoco.d siy] "paysies aJe sisanb
-3l J8Y}0 Usym pawnsal ag usy} ued aupnoiqns
feniul 8y} JO UORNIBXT "BUIINO0J 3JIAISS Jdnuiajul
ue AQ peinoaxa pue paJajus-al aullnoigns
awes ay} pue ‘paydniiaul g Aew aunoiqns e jo
uonnoaxa ‘yoels 10ssasoid 8y} uo Jsuuew jues}
-ue-al B Ul paAes ale sabejjul| e aduls ‘Jayln4
-1ojuiod abexulj 8y} 810}sal pue SABS 0} SUiNOU
yoea uj SUONIONJISU] 8pNjoul O} JO Pdj[ed aqg ||Im
aunpnoigns Jenoised Aue yoiym je yidep wnw
-1xew ay} uejd o0} J8yye pasu.ou si 818y "19)sibau
abeyul| awes ay) uym pajjes aq |je Aew yidap Aue
0} S8UIN0JQNS UIYIM pajsau saupnoiqns ‘snyl
-19)s16a4 ay) ul paoed uonewuojur abexull mau
pue oejs Jossaooid ay} ojuo paysnd Ajjeonew
-ojne aJe (1ayuiod abexyui| ayy) Joisibau payioads
8y} JO Sjuajuod pio 8y} ‘YSr Byl JO UOINIBXS Uj

pejoayeun :
pejoayeun
pejosyeun
peloajeun

N3O

ssaJppe auinoigqns
0} sjuiod mou Dd
(dun) > od

6au

ui Ind mou ssaup
-pe siu} ‘ysr buimol
-10} uonedo| sploy
0d Od — B8
(oeis

J0ssa%0.d ojuo
sjusuo9 Hau ysnd)
Bo1 — (dS)—
(19381624 JO0SSO001d
[eusajui ue st duy)
(1sp) - (dun)

aaydvoo

Od

69

supnoiqnsg
oydwnp
dsr

|

N MYV Sl jewuoy jsjquias siojpweled
-SY "}IX8 8UIIN0IQNS Ul PSAJOAU| SBINPBD pajoayeun :p Jo Jaquinu = uu
-04d dn-ues|o XoE)}s 8y} sajey|ioe) pajoayeun A +(dS) —>sH
MHVYIN "UOIUSAUOD uIN}dL BUlN0IgNS pajosyeun :7 GH—>90d

} 1-dAd p4epuejs 8y} jo Jied se pasn pajosyeun N uu X g+ 90d—>ds

"8jeisT Jeinollied e BulNp IN290 JBy) SJUSAS JO UOHBAISSAO [BNSIA MOJE O}

ouAs 8doos e se pasn si pue (8jnpow yAN4 8} Ul 810|s) 1@ uid s1indino siy | -yueseud
SITeubis HO LVIN 0101w 8y} ‘19}s1681 }ea1qo.Io1w 8y} JO SJUSJUOD By} SAYdewW ssaippe
8} UBYM "1g ININS 8y} Jo Juapuadepul suhs adoos e se yojew ssaippe ay} asn ued
[duuos.ad aourUSIURW BY} JBU} SI ‘UOONIISUl G 8Y} JO }NSA B SE 8|qe|IBAR ‘uonouny
Pu028s Y "uodN.AsUl (SNIels 8101S) 1S1S aU1 Aq NdD BY} 0} paLIejsurRI] 8q UED 19)sIBal
034 8y} 4o sluajuod ay| iesibau (8pod uondeoxs Buineols) D34 oy} ul paiols aq |Im

91 J0 9p02 uondadxe Uy ‘g Uoneso| o} dedl [|IM NdD By} ‘19S S PIOM SN}E)S 10Ss820.4d
lutod Buneoyy sy jo (1 1) 1] 8|qeus 1dnuslul BUY J “PeIOsIep S| JaisiBal 3es1goIo|w
8y} ul (e3eis7 [enuanbes 1xau) ssauppe sy Aq paljioads ajels 8y} Ja}je ajels Apeay oy} 0}
L./ ssaippe ajeis Wy ybnodys parioge aq jjim weiboidoioiu sy} ‘1os HG NINE 9Y1 YN

‘apow [puley

ul 8q 1snw NdO 8l ‘Hq SIY} 18 0} 1ap.o uj "0160] souBUBIUIBW [BI0adS 9]qEUS 0} Pasn

S pIom snieys sy ul ig NG 81 *(Sdd) PJom sniess weaboud eyy uj (40 1) 1q N OUL
uo Buipuedap ‘mojeq paqlIosap SUOHOUN) By} 10} Pasn aq ued gnaT "181sibel yeaiqoloiw
Y} 03Ul pepeo| 8q 0} NdD By} Ul ¢ 13}s16a. esousb Jo s)q § 18MO| Sy} SISNED ‘09/ | | Y} U]

NN¥900

€000.}

Od

NI

AHVYIN

19)1s163y
yeaiq
-0JOI\ peoT]
anan

uonduoseq S8pOD UOHIPUO) uonesado

9poddo

adA)

uononsu|
/o1UOWBUN

"Ju0d ‘Jog uononisuj Li-dad 1-v alqel

70

‘uononJisul
SIY} JOj pala}eun aJe S3p0d UOKIPUOD “INOJ0 ||IM S,d0-0U ‘UOIONIISUl Y} JO UOH
-9]dwo9 Jo Juslx® 8Y} 0} pauyap aq AJuo [|Im Sepod uoiesado [ebaj|l Jo asn ay] “1sIxXe jou
llIM saunjesy ayes|iey pue sasodind oysoubelp 10y Ajuiew S| UOIONISUI 8Y) "UOHBUIWIEXD
ue JO s} nsaJ 8y} Jo paysodep 8q 0} UOBWIOUI BY) SUlRlUOD ‘Ja)siBal [eiauab e ‘OY

"8p0o0IoIW 09/ | | sipeuaq Aoauip

apo9 ay] "yuspuadsap-uofjeiado pue -19)siba. s| pue payoads st 30D NOILYHIdO 24l
'SSaJppe SNGINN [BUIS1Ul UB BIA JO pauIN} S| 84oeo ay | 910N

'sJ9)s16a1 Jo uolje.s}|e U ‘8p09d 1M By} ybnouy} ‘smojje os|e uononasul ay |

'01 0} deJ} e uj }nsal [jIm BPOW JaSN U} UOIINDSX8 UOIIONIISU| "uonouny INY

-X3 8y} ybnouyy sesodind onsoubelp 1o} sia)sibal [euislul Jo uoleUjWEXS pUe Ssia)s|bal
reusayui jo 6uibbo| Joiie moje 03 s1 8sodund utew sj| ‘apowl |9uJdy Ul AjUO paINdaxXa

S| uononJisul ay] "ssaippe pue uonesado ayy buiAyosds 30D auUl yim ‘adedssa ue se
pasn S| pJOM }SJi} 84| "UOKOUN} dOUBULBUIBW O1109ds-105$9204d B 10§ 09/ | BU) Ul pas

009920

NN

d3Qa pue
‘we

-X3 ‘@doueu
-sjuley
a3an

71

(3L1dm) (21)dSD ZLexXX (avad) (¥1)dSD vLLXXX

(3LEM) (L1)dSD LEEXXX (@vay) (e1)dSD eLIXXX
(3L1dM) (0L)dSD 0LEXXX (avay) (21)dsD 2k XXX
(3Lam) (2)dsD 20exxx (@vaw) (L1)dSO LEEXXX
(3L1MM) (9)dSD 90EXXX (@vay) (01)dSD 0L EXXX
(3L19M) (S)dSO S0EXXX (avay) (2)dSD 20LxxX
(3LEM) (P)dSD YOEXXX (av3y) (9)dsSD 901XXX
(3L1HM) (€)dSD £0EXXX (avay) (6)dSD SoLXXX
(3LEM) (2)dSO 20EXXX (avad) (1)dso voLXXX
(3LaMm) (1)dSD 10EXXX (avay) (8)dSD £0LXXX
(3L”HM) (0)dSD 00EXXX (avay) (2)dSo 20LxXX
(3LIM) HOIH dSE TVHHBIH Z2XXX (@vay) (1)dSD LoLXXX
(3LIMM) HOIH 4S8 4TVH MOT X92XXX (avad) (0)dSD 00LXXX
(311MM) MO dSE TVH HDIH XS2XXX (Qv3Y) HOIH dSE 4TYH HOIH X20XXX
(3LIYM) MO dSE 4TVH MOT XPEXXX (@v3y) HOIH dSE 47VH MO X90XXX
(3LIMM) HOIH dSV 4TVH HOIH XEZXXX (Qv3ad) MOT1dSE ITVH HOIH XSOXXX
(3LIHM) HOIH dSY dTVH MOT X22XXX (@v3y) MO1dSa 4TVH MOT XFOXXX

(3L1HM) MOTdSY 4TVH HOIH XLEZXXX (Qv3aY) HOIH dSY 4TVH HOIH XE0XXX
(3LIHM) MOT SV 4TYH MOT X02XXX (av3Y) HOIH dSV 41VH MOT X20XXX

OVLIHOVO AvaH SSIXXX (Qv3H) MOTdSY 4TIVH HOIH XLOXXX
JLVAINYANITHOVO #SLXXX (Qv3H) MOT dSY 4TVH MOT X0OXXX
NOILONN4 ANV H3LSID3IY 3000 NOILONN4 ANV H31SI1D3d 3000
a3an aan

‘Mojeq pajou a.e uoiouny pue sisysibal ay) 40§ s8poo uonesado ay |

uonduosaq S8p0D UOHIPUOD uonesado 8po0do adA)] uononujsu|
/olUoWauN

"ju0d ‘}os uondnnsu| Li-dad Lt 9iqeL

72

6G/GP/L1L :AddIN -09/L1 :IddN
‘dew Aiowaw pue siaysibal juaino

ay) Buisn paindw oo s| ssaippe 82.1n0s
ay] "aoeds snoinaid uj ssaippe ue woly
0B)S JUBLIND BY} OJUO PIOM B sBaysnd

dON
(3L1IYM) H31S1D3Y LINI
(311dM) HA1SI1D3Y S3H
(311HM) YNN

(3LIYM) HIINNOD
(3L1HM) 43181934 LdIHS
(3LHM) HALSIDIH A
(311dM) 43 1S193H DV
(3LIM) (£1)dSD

(3L1dM) (91)dSD

(3LidMm) (s1)dso

(31m) (v1)dso

(3LdM) (e1)dSD

£GEXXX
ZGEXXX
FSEXXX
0GEXXX
LVEXXX
IPEXXX
SYEXXX
PPEXXX
LLEXXX
9LEXXX
SLEXXX
PLEXXX
ELEXXX

pajoayeun :
paies|o :

0 = 924N0S Y} J1 188 :
0 > 80JN0S By} 1188 :

ZN>0

(Qv3ay) g#431s1934 s0a
(av3ad) 1#4Y31S1934 S0a
(@v3y) 431S1934 INNOD
dON

dON

(av3ad) 43aLsiv3d bvd
(avad) vno

dON

(avad) A0IAE3S

avad) Wvr

(avay) (£1)dso

(avad) (91)dso

(avay) (s1)dso

(dwsay) - (ds)—
(01s) — (dway)

€G1LXXX
SSIEXXX
LY XXX
9P XXX
SY XXX
P XXX
EV XXX
Sr XXX
L7 EXXX
OV XXX
LEEXXX
9LLXXX
SEEXXX

aoeds

uoponJsul
snoiaaud
woJj SAOW
Id4dIN
aoeds ejep
snoiraud
wouj Ao
ad4n

——

73

1onpoud paywi) 19-9¢ € pue (IWNSLIN Snid AHHYOLININ) 1onpoud jened 1g-9¢ v
(LANTN) d4omiau uoneosydiynw ayl 3se) 0 sesodind onsoubelp 10} pasn ‘09/1 | 8u} uj

aoueUBIUB

G000.} NI ddiN
'SpJom uo sejesado AQIN Se Ajoe
-X® $9}JAq UO sajesado GAQIA 8SIMISUID
‘(uotsusixe ubis) 83Aq 18P0 MO| By}
J0 11q Jueodyiubis 1sow sy} spualxa (suon
-onJjsul 8}Aq Buowe anbjun) Josisal
B O} 9AON 8UL ‘AOW se sweg :aihg
‘pajosyje jou s| puesado pajoayejou 9
90IN0S 8y "}SO| 9B UONRUNSSP 8y} JO paies|o A anop
SJUBjuU09 snolnaid 8y "uoieI0| Uoiieu 0= (o1s) 1188 7 aassti aAON
-1s8p 8y} 0} pueiado 894N0S Y} SOAO|N 0> (o1s) J1388 N (218) > (1sp) aasslio oa AOW
"(1)3 utyey s ynsey ‘uonezijew.ou J08)481 01 ((0)3) Hliys
00V Jo Jusuodxa auy sisnipe (L) QvdSd Ul 48| S| NS8.) JIBLIUS B} JO [041U0D 108.IpUl uoyn
MWHON au3 Buisn Jaquinu Bupnse. ay) sazijewriou {(3iq uspply sy} sdoip AjoAnosye -ez|jewJou
uonoe siy1) uonesado Buipunol sy} Jo s)nsal 8y} seoe|d OM} SHIYS-}48| equinu uoisioaid aoueuUaUR|
(elanop) Buneoyy 1o} (20) y€ uomsod 1 Ul (0) AV S JO SIUBIUOD BYI SPUNO 09/ L BYY UD 0001 N SNIN
"Aluo yg/1| "sseippe
81Aq e se pajeaJ) s| puesado uoneunsap
ay| -seysibau ay) jo 814q Jaddn ybnouyy pajosyeiou :H .
papuaixe ubis s| 2 1q Sd ‘0 @pous S| uon paJeso A ’
~BUNIS3P J] "UONBUNISSP dA[}08))8 8y} 0} 0=</.0>S8d1es 7 SHq g Jemoj isp
paAow ale gd syi Jo sjuauood Jiq g 8y | L =249 8Sdiies N Sd — (isp) aa.Zeot SN Sd4n
uonduosaq S8poY uonipuon uonesadQ apoodo odAl uononasu|
/9lUoWBUN

"1uod ‘}3s uonannsul Li-ddd L-v 3iqel

74

‘Aluo yE/11
-pebueyoun sulewsal puesado ous

oy "UOoioNJISUl SIY} YlIM }8S 8 Jouued awes D
$ 19 Sd JBYl 910N 'Ssalppe diAq e se awes A
paieaJ) si ssaippe pueiado 80Inos 8y L awes :Z
'Sd @U} JO SJUSU0D JuaLINO 8y} doeld €-0 pueiado 0Js @Al
-84 pueiado aAlj0BYd BY} JO SHq 8 BUL -o99yjo 0} Buipioaoe jJos N (048) > Sd
'09/41L UHIdLIN
se pajosdiaul :ad LW -GG/G¥/ L1 IdLN
‘dew
Kiowaw pue sielsibal juaiind ayj buisn
peindwo9 si sselppe uofeul}sap syl
‘(2L‘S1 SHA) Sd @oeds snoiaaud ul ssaip paloayeun D
-pe ue 0jul PJOM JEU)} S3J01S pue (F1'GL paies|d A
s)a) Sd Ag paulwialap oe)s jJuaLnd 0 = @0Jnos 8y} jiies 7 (dway) — (1sp)
ay} jjo piom e sdod uononiisul siy g 0> 901nos 8yl i 1es N +(ds) = (dwsay)
"AHHVOLINN

snid WNSLIN PUB INNSLINI JO (<8G> HY) HJ JuBD|IUBIS 1SOW U} JO SJuSIU0d
U} USI|EIS® 0} PAPaBU LONEBWLIOJU] 8Y) OAES (Z) QVdSH PUE (1) QVdSH 40 sjusuodxa sy

“(AHHVOLINW snid WNSLINI)
<£2:85> (2) QVdS4 PUE ‘(IWNSLINN) <€2:85> (1) AvdSd ul paJois siinsaiayl

<ge:gy> (0) avdsd ~ <£0:1e> (0) vdSd
:wouy peresauab st (INNSLANW)

SSY901 SN Sd1N
aoeds
uoijonJisul
snoiaaud
0} 9AON
IdLN
aoeds ejep
snoaid
0} A0
adiin

75

SS59900
SS9904 S

1onpoud
leiiied

|

paioayeun 9
‘pazijenul sue ‘OH NN ‘JeisiBau pajosyeun :p
luswabeuew Alowsaw pue ywi| yoeys pejosyeun :z (dS) sd
8y} ‘10ss9004d 09/ 1 L-dAd BY3 UIUNM paloayeun :N (ds) od 500000 S 1353y
0 = }nsai Ji paies)d)
"Jies)l Aq paoejda. s| 00000 | 1eY) 810N 000001} = NS84 }118s A ayeboN
‘Juswe|dwoo s,z si Aq ssaippe uon 0 = }nsaijiias 7z aavsot 993N
-BUIISOP By} JO SjuLjUOD By} seoe|dey 0> ynsai ji1es N (1sp) — (1sp) aarsoo (o] DaN
(‘ppo
SIY uaym Y isnl 0} seonpas yaiym ‘ LAy
‘d S| uoneulsap [enjoe 8y} Jey} 910N)
H'S TTNIN S| XBlUAS IB|qUIBSSY “Paio}s
s11onpo.d Japio mo| ay} Ajuo ‘ppo ,-2 0} jenbs o eY)
si Y J| "(uana s Y J1) 1s)siBas Buipsasons Jejealb Jo , z— ueyy
ay) pue a)sibau uoneunsap ay) $S8| S1}Nsal 8y} Ji1es :H
ui pa.ois pue paydiynw aJe s1abajul paJies|o :A
juswa|dwoo s,g Se usye} 80.N0S pue 0 =1onpoud jiles 7 Adninpy
Jes16a1 uoneUNSBP BU} JO SJUSIUOD BY | 0> 1onpoud j138s N (018) X 4 — LAH'‘H SSHO0.0 oa INN
uonduosaq S8poY uoilpuon uoneisado apoNdO adAl uononJsuyj
/OIUOWBUN

"JU0o ‘}as uoydnAIsy| Li-ddd L-v 9iqel

76

*UoNONJISUI }XBU 8y}
Bunnoaxa 0} Jold undo0 ||Im deuy aoel} e
‘Sd 8yl ullig | 8y}sies 1Y 8yl j| "yoe.ls
J0sse004d ay} wouy (paddod) pa.tols
-8191e Sd PUB Dd 9| ‘9Ulln0. 80I1AI8S
deuJ} Jo }dnLISIUI UB WO} }IXd 0} pasn

‘uofjeuiysep 8y} Jo Hq J8pJo

ybB1y sy} oju papeoj aJe 1iq D 8y} Jo
Sjuajuod snoiadid syl pue 1iq D 8y} ojul
papeo] s }iq 19p.Jo mo| ay] ‘aoe|d auo
b1 uonEUNSEP BU} JO SHI] [[B S8lBIoY

‘uon

-BUIISOP 98U} JO 1Ig 19PJO MO| 8y} OJul P8
-peo| 8J1e g O 8y} JO sjusuod snojraid
8y} pue pJom snjeis ay} Jo 1q D 8y} ojul
pepeo si }iq JepJo ybiy ay | "soe|d suo
19| uonjeuilsap syl Jo siiq ||e s8jejoy

)oeys

10s$920.4d WOL PApPEO] :

Noeys
J0ss890.1d WoJ) papeo)
Noels
10ss920.4d woUy papeo)
3oels
J0ssa00.d wol) papeo|

uon
-Bullsep au}jo Hq Jap

-10 MO 38U} YHM papeo| :

Hod
Aqies selq O ay) pue
HO N U3 JO HO 8Als
-Njox® 8U} Yl papeo)
QaJe

HnsaJ Jo sHq |[e Ji 18s
19S S| }insal ayy

jo1uq JepJo ybiy 1388 :

uoneu
-l1sep 8y} jo }q J18plo

b1y 8y} UM pepeo) :

(uoneusado aje}

-04 8y} jo uone|dwod
2y} Aq 18s se) Hq O pue
1A N @Ul JOHO @Als
-NjOX3 8yl Yyim papeo|
0 = plomyns
-a19yijosiq ey ies
(0 < ynsay)

189S S| pJom }jnsal ay} jo

Hq JapJlo ybiy syl jiles :

o

Z N >

5

A

)

+(dS) = sd
+(dS)—0d 200000

aoe|d

auo Jybu ajejol
(1sp) — (1sp) aaosoo
aoe|d auo 18| ajejod aateot
(sp) - (isp) aaleoo

SN 114

Wby
areI0Y
gdoy

0os dod

ye7 ejeioy
a70d

os 10d

77

[

‘1LY 9y} Jaye Ajaeipawiwl] JnD90 |IM
den 1, 9yl ‘uononuisul [1Y 8y} Jo ases
ayy uj ‘deuy 1 ,, Ixau ay} o} Jond paynos

-X83q ||IIm 1 1H 8y} Jayje uononJisui isay
oy} ‘Buipuad s| desy aoed} e §| "desy aoesy

‘e sjuad [1Y ajiym ‘desy aoeuy e sjiq yoeis
-1yul yi Jeyy 1deoxe (uononaisul Ixau 8yl 10ssas0.d WoJj papeo| 9
Bunnosxs o} Jo14d 12920 |jim dely aoel} e yoels
‘Sd @ul ullig L 9Y1 S19$ | LY BUl JI HoBIS 10S$8204d WOI) papeo) A
Jossasoud ay} wouy (paddod) pasols Noels
-918Je Sd Pue Od 89U} ‘8uno4 99jAI19S 10SS820.d WOI§ papeo| 7
deuy Jo }dniisiul UB WO} }iXe 0} pasn) yoels +(dS) - Sd
uononusul |1y syl seawes ayysisiyl J0ssado.d woly papeo| N +(dS)—>od 900000 SN 114
‘GH S1H ue yum
‘Uxe Ajfeuly pue (4)XD 4o ‘(GH)X'+(sH)
sapow Bujissaippe yum sisjsweled
dnjoid Aew 1sp‘GH HST B Ulim pajjeo
8unnNOIQNs B pue ‘Od SLY UB Yim si
-X81Sp‘Od HSI B UM pajjed aupnoigns
B ‘Sny] '[||ed s} Ul pasn sem Jeyy Jajsibal
awes ay} ybnouy} spew AjjeoidAy sy aun
-N0JQNS JUBJIUSAI-UOU B WO} UIN}aY pajoeyeun 10
-101s169.4 pay1oads ayy ojul yoels pajoayeun A aunoIgqng
10ss9%0.d a8y} jo yJuswals doj ey} sdod pejoayeun :7 +dS — (621) wodj uin}ay
pue Od ojul J8)sibal Jo sjusu0o SpeoT pejosyeun :N (681) > 0d H02000 Od Sl
uonduoseq S9poH uonipuon uonesadQ 2poDdo odA) uononJjsuj
/o1uowaup

"JU09 ‘}9§ uoonisuj Li-ddd L-v alqel

78

‘0=t HqJisuqg

BuIpuodsa1100 SIBa|D *| B SI ¥ }q 1 ‘€ 40 ‘g ‘| ‘0 1q Aq payioads 1iq ay) sias “a°| Liojesado
3yl JO }g J1B9j9/19S a1 ‘p 1 JO @suas ay} 0} Buipioode payipow aIe (-0 sHq) Jojesado
9p09 UoNIPUOD BY} Ul S}q 0} Buipuodsa.Li09 sl apod UoHIPUOY “18y1abo)} }es 1o paies|d
aq Aew s}1q 8SaYJ JO SUOIBUIGIOD 9|qE}03]9S 'S 8P0J UOIIPUOD SIES[D PUE S18S

‘0=fvuqsiq

Bujpuodse.oo s1ea|D | B S| HQ JI ‘€40 ‘2 ‘| ‘0 Hg Aq pauioads 3ig 8y) sjes ‘'8l tiojesado
2y} JO }iq JED|9/19S BU} ‘¥ 11q JO asuss ay} 0} Buipioode payipow ale (€-0 sHA) iojesado
P09 UOIHIPUOD 3y} Ul s}iq 0} Bulpuodsa.i00 s31q 9p0od uolpuo) “18y1ebol Jes 1o pases|d
aq AeW s}1q 953y} JO SUOIIBUIGLIOD 3|qE}08[9S "S}q PO UORIPUOD SJedjd pue s}og

‘0 =vUqsuq

Buipuodsa.liod sieaj | B S| ¥ 11q J1 ‘€ 10 ‘g ‘L ‘0 Mg Aq paiioads Jiq ayi sjes “o' liojesado
8y} 10 11q Jes|9/18s 8y} ‘p }q JO asuas ay) 0} Buipiodoe payipow aJe (g-0 shq) jojesado
9p092 UONIPUOD 8U} Ui SH(0} Bulpuodse.109 sHq 8pod UolIPUOY "18ylabo} j8s 1o pases|o
8q Aew s}iq S8y} JO SUOHBUIGIOD 9|qe108|8S "SI 8P0D UOIPUOD SIED[D PUE S19S

‘0= v Uqjisuq

Buipuodsa1iod siea|) ‘| B Sy 1A 3l ‘E 40 ‘2 ‘| ‘0 U Aq paiioads 1q sy} sjes o'} Liojesado
3y} JO }Ig JB9|9/18S aU} ‘p 1 JO asuas 8y} 0} Buipiodoe payipow a.e (g-0 sHq) Jojesado
9p09 UOIIPUCS 8y} Ui sHiq 0} Bulpuodsa.loo s)iq 8pod uonipuo) "18yiabo} 18s Jo paies|o
aq Aew s}i1q 9S8y} JO SUOIIBUIGUIOD B|qB1O9|9S "SHQ 8P0I UONIPUOD SIB3|D PUE S}8S

‘0=vHqslq

Buipuodsa1io9 siea| | B S ¥ 14 I ‘€ 40 ‘2 ‘L ‘0 1q Aq paiyioads 1g 8y} sies “o°| Liojesado
aU} JO 1q JB8[9/18S aul ‘v 11q 0 asuas ay} 0} Buipioooe paljipow a.e (g-0 sHq) Jojesado
P09 UORIPUOD By} Ul SHq 0} Buipuodsa.i09 s)iq 8pod uUoHIpuo) *18y1abo) Jes 1o pales|d
2q Aew s}iq S8y} JO SUOHBUIGUIOD 9|qEO9|9S "SHJ 8POD UOKIPUOD SIBSJO PUE S19G

‘ynsaJ ayy jo yed Japuo ybiy 1=9
8y} WoJj pajoeiigns aq 0} sajkq/spiom pue O = (ISp) §i paes|d D
19pJ0 MO| BU} JO UOHOBAGNS BY} WO 000001} = (1SP) #1185 A
AJ1eo oy sjwiad S|y "uoieunsap ayl 0 =1M}nsaijies 7
woJj 11g O 8y} JO SIUSU0D By} s)oeIqnS 0> ¥}nsaiji1es N 0 — (1sp) — (1sp)

¥92000

0.2000

0.2000

192000

112000

agassot
aasesoo

Z18S
00 Z3as

ABS
00 A3S

[NRER
20 N3S

o188
00 03s

sOlle1es
00 00s

Auen

joenqgng

g08Ss

oS 0gs

79

ol

ssaJppe 10}09A ybnouy) deuy Josseosoid
B Ul SHNSa1 ‘09/1 L Ul pasn Ji {(Gy/ L1

ay) uj Ajuo) sepouws J0sialedns pue

Jasn ui do ou e s| uonoNJSUl iy] :aloN
N 1dS :S! XejuAs Ja|quassy

'1s0|

s1 Ayaond pjo ay] “Ayiond pebueyo e
Buisnes sny) G-/ siq ‘(Sd) piom snjeys
weubouid ay) ojul papeo| aie uoionls
-ul 8y} Jo suq a4y Jueoyiubis ises| ay |

*uono8IIp PJeMIO) BY} Ul [0J3U0D

J3Jsuel} 0} Pasn 8¢ 10U UED UOI}ONIIS

-u1 gOS 8u} Jeyl 8joN "0 0} enba jou sy

Y PajuswWwaIoep 8y} jl 9peW 8 0} S| 19}

-SUBJ} YOIYMm O} SSBIppe 8U} S| ¥ 219UM
v'd 808

:S| XBJUAS JS|qUIBSSY ‘|01}U0D

dooj Jo poyaw juaiolye ‘ise} e sepiroad

uononJsul siy] “Jequinu aasod 1q-9

e sk pajaidiaiul si1esyo ay] “(piom Bul

-m0||0} 8y} 0} Bunuiod mou) Hd 8y} woly

pajoe.igns S| 19s}0 ay} 89IMm} ‘0 0} [enba

jJou S 1 J| "pajUBWSI0aP S| J8siBel sy |

pajosyeou :p
pajosye jou A
pajoayeiou 7
pajoaye jou N

pejosyeun 9
pajosjeun A
pejoayeun :z
pajoayeun :N

(u
u u= Ayuond) Ao
-lid—> (5-2 suq) sd N€E2000 Od

(1esyo x g)

1oA8|
Ayioud e
1dS

0 0} |lenba
10U Ji youeuq
pue

auo joelqns
40S

uonduosaqg

S8pOD uolIpuoH

— O0d — 0d usy}
0 =1ou IE
S80p }Nsa4 Siy} -yo sn|d
l-d—>H 004220 od
uonesadQ 8pondo adA|

uononusu|
/olUoWaUN

"1U0d ‘Jag uononAsu| Li-dad L-b aiqel

80

‘spJom ajdiynw ybnoayy

papuaixa aq o} ubis ay} sywiad

11 9sneoaq oiswyiie uoisioaud aid
-i}Inw ui [jnyasn Auenoiied s uononas
-ul S|y "pueJado uoleusap ay} ui
paoe|d si1 0 B usay} ‘Jea|o s1 g N i (pue
-Jado uolneulisap ay} ui paoeid si | —

B Uy} 189S S| N 11q 3p0D UORIpUOd 3yl J|

*(ssaJppe pJom B g }snw uoljeu
-11S9p) pPJOM UOI}BUIISAP BU} JO 81Aq J8p
-10 MO| pue 8}Aq Japuo ybiy sabueyoxy

‘Mol
-10q € S9]EDIpUI 18S UBYM ‘I O 8y} ‘oN
-awiyiiIe uois1oa.d 8|qnop uj ‘pajosye
10U 8. 821N0S 9y} JO SJUBIUOD 8y 1S0|
aJe uoneunsap au} Jo sjusluood [eulb
-140 8y 'SS@JPPE UOIJeUlISOp BU} 1B }NS
-81 8} SaABS| pue puesado uoljeuiisep
8y} wouy puelado 821n0s 8y} S}orIIgNS

pejoayeun
paies|o

1es|0 liq N Jl 188
pejoayeun

paJes|o
pales|o

0 =)nsau

JO 91AQ 19PJO MOJ Ji }OS
}os

stynsal jo (L Hq) aihq
19pJ0 MOJ JO }iq J8p
-10 }q Japio ybiy j1 1es

Hns

-8. 8y} Jo Hq jueoyiubis
1Sow 8y} wouy Aled

B S| 818U} Jl paJies|o
jInsaJ 8ay)

Jo ubis ay) se sawes ay)
S| 804N0S 8y} jo ubis
sy} pue subis ayisoddo
jo a1am spueiado sy}
j1 “"o'1 ‘uonesado auy jo
}INS9J B SB MO|JJOA0 O}
-jdwyiiie sl alayl §l 18s
0 = lnsaijljos

0> Unsailjlies

S0 ZN30

ZN>

108
SIHG N |—— (isp)
1e9|9

SING N 31 0— (isp) aazeoo

1 914g/0 8¥4g

08Mhg/| alkg aaeooo

(0us)

(o1s) — (1sp) — (1sp) aassot

puaix3g ubig
0os 1XSs
a)Ag demg
oS avyms
oenqng
od ans

81

-MO}|0} UOHIDNIISUI IXBU By} 0} sjujod Dd
8y} ‘suonodnJisul jje ul Se ‘| Y U "8dIA
-ap 8y} wouy sjsanbau sng Ag paisjunod
-U@ 84 ||IM S810Ud)e| padnpul-10ssad0.d
ou 8ouls ‘Alowsw pue 8dIASp UsaMIaq
sajel Jajsuely Joybiy sywiad siy|
‘Kiowsw wouy spuesado 10 suonons
-ui Buiyoyey Ag snq 1oy 8)adwios jou

11im J0ssa20.d ay} ‘pUBWIWIOD | WA\ UB pajoayeun 9
aAIb usaq BuireH "1dnuiisiul [eulalX8 UB pajoayjeun A
10} SHEM)i 9]1ym SN dY} JO asn ysinbujj psjoayeun :z
-91 0} J0ss@90.d 8y} 10} Aem e sapinoid psjosyeun :N 100000 SN 1IVM
paJesp 9
‘SSaippe uon paies|d A 189
-BuUl}sap 8y} jo sjuajuo9 8y} 0} Buipioo 0 =}nsaijiles 7 aazsot ga1S1
-0B Z pue N $8p09 UoiIpuod ay} siog 0> unsaljiies N (1sp) - (3sp) aaZsoo oS 1s1 9
‘asn [etauab Joj papuswiwooal sj uon 10
-OnJisul 441 @yl ‘ 1IN Jo @sn uanbauy -58A ded} Woly pepeo) 0
S9)ew 91eM}OS Y 11D 22UIS 80N 101
"y¢ ssalppe je -03A deJ) wouy papeoj :A
S1 dvd.l 1o} 101004 desy 8yl jeyy 1deoxe 10} (9¢) > sd
‘uoljesado ul [eojjuapi aJe s N3 pue -00A deJ} wo. papeo| 7 (ye) = od
SdvH.l 'suolonnsul dvdl aJe 22/y0} 10} Od—(dS)— YA 1]"
0} 00%¥0| Woi) s8pod uonesado -08A deJ} Wolj papeo| N Sd — (dS)— 0} 00v0} Od dvdl
uonduosaqg $8p0OY UOIHPUOD uonesadQ apoddo adA} uonoNJIsu|
/O1IUOWBUN

"Juod ‘}ag uononisul L1-dad I-v aiqel

a‘’d HOX

S1]eUWLIO) J18|qWIBSSY 'pajodjjeun ale pajosyeun

1181621 Jo sjudlu0) "ssaippe uoljeuns paies|d A

-8p 9y} ul paJojs si puetado uoleuisap 0 =}nsaij18s 7
pue J93siba.1 8u} J0 YO BAISN|OXe 8y | 0> Nnsaiayijiies :N (isp)ad — (1sp)

) 'SIND20 | SSaJpPe J0308A ybnoay deuy e ‘psjqeus jou

s1 uoido 8y} J| "SPJOM UORONIISU| OJOBW [RUOHIPPE JO PIal 2d AQ UOHBILLIBISP UoHONSUl
Jayuny yum ‘uojjeujwialap dnolb uononsisul [eiiul 10y pasn si pidly La eyl "9401S |04uod
Papud)Xa 10 B10)S [0UOD JBSN BY} O} UOHBWLIOU] yojedsip sapinoid uoldnsul Sy |

(43sN) @po uonoung papusixgy
‘uoiido QSN 8U} YHM PBJeIDOSSE UOIIBIUSWNOOP Ul PAUIBIUOD 818 8Snh UOo S|iejoQg
‘uononJIsul 94X 8yl sazi|in 09/ | L-dad @yi 104 uondo (8101 |03U0D Jasn) SON UL

" LIV M @} Buimoyjoy

uononJsu| 8y} Je ssado.d pajdniisiul
ay} jo uondwnsal asned |jim (uonon.is
-U] | 1Y UB JO uOoi1ndaxa 'd°|) aulnol
1dnuusju) 8y} WOy }IX8 8Y | "POAES S|
LIVM au3 Buimojjoy uononisul Ixeu sy}
JO ssaippe a8y} ‘yoe)s ayj oyuo paysnd
aq 0} Sd Pue Dd ay} sasned 1dnuisjul
ue uaym ‘sny] ‘uonesado ||vM ayi Bul

aadvlo oa HOX

83

apo)H
uonound
pepusixg
O4X

CHAPTER5

PROGRAMMING TECHNIQUES

The PDP-11 offers you a great deal of programming flexiblity and
power. Utilizing the combination of the instruction set, the addressing
modes, and the programming techniques makes it possible to to de-
velop new software or to utilize old programs effectively. The program-
ming techniques in this chapter show methods which exploit the
unique capabilities of the PDP-11. The techniques specifically dis-
cussed are: Position-Independent Coding (PIC), stacks, subroutines,

interrupts, reentrancy, coroutines, recursion, processor traps, and con -
version.

POSITION-INDEPENDENT CODE

The output of a MACRO-11 assembly is a relocatable object module.
The task builder or linker binds one or more modules together to
create an executable task image. Once built, a task can generally be
loaded and executed only at the virtual address specified at link time.
This is because the linker has had to modify some instructions to
reflect the memory locations in which the program is to run. Such a
body of code is considered position dependent (i.e., dependent on the
virtual addresses to which it was bound).

All PDP-11 processors offer addressing modes that make it possible
to write instructions that are not dependent on the virtual addresses to
which they are bound. A body of such code is termed peosition inde-
pendent and can be loaded and executed at any virtual address. Posi-
tion-independent code can improve system efficiency, both in use of
virtual address space and in conservation of physical memory.

In multiprogramming systems like IAS and RSX-11M, it is important
that many tasks be able to share a single physical copy of common
code; for example, a library routine. To make the optimum use of a
task’s virtual address space, shared code should be position indepen-
dent. Code that is not position independent can also be shared, but it
must appear in the same virtual locations in every task using it. This
restricts the placement of such code by the task builder and can result
in the loss of virtual addressing space.

The construction of position-independent code is closely linked to the
proper use of PDP-11 addressing modes. The remainder of this
explanation assumes you are familiar with the addressing modes de-
scribed in Chapter 3.

85

PROGRAMMING TECHNIQUES

All addressing modes involving only register references are position
independent. These modes are as follows:

R register mode

(R) register deferred mode

(R)+ autoincrement mode

@(R)+ autoincrement deferred mode
-(R) autodecrement mode

@—(R) autodecrement deferred mode

When using these addressing modes, you are guaranteed position
independence, providing the contents of the registers have been sup-
plied independent of a particular virtual memory location.

The relative addressing modes are position independent when a relo-
catable address is referenced from a relocatable instruction. These
modes are as follows:

A relative mode
@A relative deferred mode

Relative modes are not position independent when an absolute ad-
dress (that is a non-relocatable address) is referenced from a reloca-
table instruction. In this case, absolute addressing (i.e., @#A) may be
employed to make the reference position independent.

Index modes can be either position independent or position
dependent, according to their use in the program. These modes are as
follows:

X(R) index mode
@X(R) index deferred mode

If the base, X, is an absolute value (e.g., a control block offset), the
~ reference is position independent. For example:

MOV 2(SP),RO :POSITION INDEPENDENT
N=4
MOV N(SP),R0 :POSITION INDEPENDENT

If, however, X is a relocatable address, the reference is position de-
pendent. For example:

CLR ADDR(R1) ;POSITION DEPENDENT

Immediate mode can be either position independent or not, according
to its use. Immediate mode references are formatted as follows:

#N immediate mode

86

I

PROGRAMMING TECHNIQUES

When an absolute expression defines the value of N, the code is posi-
tion independent. When a relocatable expression defines N, the code
is position independent. That is, immediate mode references are posi-
tion independent only when N is an absolute value.

Absolute mode addressing is position independent only in those cases
where an absolute virtual location is being referenced. Absolute mode
addressing references are formatted as follows:

Q#HA absolute mode

An example of a position-independent absolute reference is a refer-
ence to the directive status word ($DSW) from a relocatable instruc-
tion. For example:

MOV @#$DSW,R0 ;RETRIEVE DIRECTIVE
;STATUS

EXAMPLES

The RSX-11 library routine, PWRUP, is a FORTRAN callable
subroutine to establish or remove a user power failure AST (Asynchro-
nous System Trap) entry point address. Imbedded within the routine is
the actual AST entry point which saves all registers, effects a call to the
user-specified entry point, restores all registers on return, and excutes
an AST exit directive. The following examples are excerpts from this
routine. The first example has been modified to illustrate position-
dependent references. The second example is the position-indepen-
dent version.

Position-Dependent Code

PWRUP::
CLR —(SP) ;ASSUME SUCCESS
CALL X.PAA ;PUSH (SAVE)
;ARGUMENT ADDRESSES
;ONTO STACK
.WORD 1.,$DSW ;CLEAR DSW, AND
:SET R1=R2SP
MOV $OTSV,R4 ;GET OTS IMPURE
;AREA POINTER
MOV (SP)+,R2 ;GET AST ENTRY
;POINT ADDRESS
BNE 10$;IF NONE SPECIFIED,
;SPECIFY NO POWER
CLR —(SP) ;RECOVERY AST SERVICE
BR 20$;

87

10$:
MOV
MOV

20%:

CALL
.BYTE

BA: MoV
MOV
MoV

PROGRAMMING TECHNIQUES

R2,F.PF(R4)
#BA,—(SP)

X.EXT
109.,2.

RO,—(SP)
R1,—(SP)
R2,—(SP)

Position-Independent Code

PWRUP::
CLR

CALL

.WORD

MOV
MOV
BNE

CLR

BR
10$:

MOV

MOV

ADD
TION

20%:

CALL
.BYTE

;ACTUAL AST SERVICE ROUTINE:

-(SP)

X.PAA
1.,$DSW
@#$0TSV,R4
(SP)+,R2

10$

—(SP)
20$

R2,F.PF(R4)
PC,—(SP)
#BA—.,(SP)

X.EXT
109.,2.

; 1) SAVE REGISTERS
: 2) EFFECT A CALL TO SPECIFIED SUBROUTINE

88

'SET AST ENTRY POINT
'PUSH AST SERVICE
'ADDRESS

;ISSUE DIRECTIVE, EXIT.

’

:PUSH (SAVE) RO
;PUSH (SAVE) R1
:PUSH (SAVE) R2

:ASSUME SUCCESS
:PUSH ARGUMENT
:ADDRESSES ONTO
:STACK

:CLEAR DSW, AND
:SET R1=R2=SP.
:GET OTS IMPURE
:AREA POINTER
:GET AST ENTRY
:POINT ADDRESS

;IF NONE SPECIFIED,
:SPECIFY NO POWER
:RECOVERY AST SERVICE

;SET AST ENTRY POINT
;PUSH CURRENT LOCATION
;COMPUTE ACTUAL LOCA-
;OF AST

;ISSUE DIRECTIVE, EXIT.

o

PROGRAMMING TECHNIQUES

3) RESTORE REGISTERS
; 4) ISSUE AST EXIT DIRECTIVE

BA: MOV RO,—(SP) :PUSH (SAVE) RO
MOV R1,—(SP) :PUSH (SAVE) R1
MOV R2,—(SP) :PUSH (SAVE) R2

The position-dependent version of the subroutine contains a relative
reference to an absolute symbol ($OTSV) and a literal reference to a
relocatable symbol (BA). Both references are bound by the task build-
er to fixed memory locations. Therefore, the routine will not execute
properly as part of a resident library if its location in virtual memory is
not the same as the location specified at link time.

In the position-independent version, the reference to $OTSV has been
changed to an absolute reference. In addition, the necessary code has
been added to compute the virtual location of BA based upon the
value of the program-counter. In this case, the value is obtained by
adding the value of the program counter to the fixed displacement
between the current location and the specified symbol. Thus, execu-
tion of the modified routine is not affected by its location in the image’s
virtual address space.

STACKS

The stack is part of the basic design architecture of the PDP-11. Itis an
area of memory set aside by the programmer or by the operating
system for temporary storage and linkage. It is handled on a LIFO
(last-in/first-out) basis, where items are retrieved in the reverse of the
order in which they were stored. On a PDP-11, a stack starts at the
highest location reserved for it and expands linearly downward to a
lower address as items are added to the stack.

You do not need to keep track of the actual locations into which data is
being stacked. This is done automatically through a stack pointer. To
keep track of the last item added to the stack, a general register
always contains the memory address when the last item is stored in
the stack. In the PDP-11, any register except register 7 (the PC) may
be used as a stack pointer under program control; however, instruc-
tions associated with subroutine linkage and interrupt service auto-
matically use register 6 as a hardware stack pointer. For this reason,
R6 is frequently referred to as the system SP. Stacks in the PDP-11
may be maintained in either full word or byte units. This is true for a
stack pointed to by any register except R6, which must be organized in
full word units only. Byte stacks, Figure 5-1, require instructions
capable of operating on bytes rather than full words.

89

PROGRAMMING TECHNIQUES

WORD STACK
007100 ITEM #1
007076 ITEM #2
007074 ITEM #3

007072 ITEM #4 <«—SP 007072

007070
007066
007064

NOTE; BYTEgElIl)RE
ARE ARRANGED IN
BYTE STACK WORDS AS FOLLOWING:

BYTE3 |BYTE 2

007100 ITEM #1 BYTE { [BYTE O
007077 ITEM #2
007076 ITEM #3

007075 ITEM #4 <«—SP 007075

Figure 5-1 Word and Byte Stacks

ltems are added to a stack using the autodecrement addressing
mode. Adding items to the stack is called PUSHing, and is accom-
plished by the following instructions:

MOV Source,—(SP) ;MOV Contents of Source Word
;onto the stack
or
MOvB Source,—(SP) ;MOVB Source Byte onto
' ;the stack

Data is thus PUSHed onto the stack.

Removing data from the stack is called a POP (popping from the
stack). This operation is accomplished using the autoincrement mode:

MOV (SP)+, Destination :MOV Destination Word
;off the stack
or
MOVB (SP)+, Destination ;MOVB Destination Byte
: ;off the stack

After an item has been popped, its stack location is considered free
and available for other use. The stack pointer points to the last used
location, implying that the next lower location is free. Thus, a stack
.may represent a pool of sharable temporary storage locations.

90

"

PROGRAMMING TECHNIQUES

HIGH MEMORY
|« sp
N E0 -sp €0
N ¢ E1 le-sP
LOW MEMORY
1 AN_EMPTY STACK 2.PUSHING A DATUM 3.PUSHING ANOTHER
AREA ONTO THE STACK DATUM ONTO THE
STACKS
[T) . E0 2 e
€1 E1 <sp E1
E2 <-sp Il €3 <SP
4, ANOTHER PUSH 5. POP 6. PUSH
£3
£0
Ef +sP

7. POP

Figure 5-2 lllustration of Push and Pop Operations

Uses for the stack

e Often one of the general purpose registers must be used in a subrou-
tine or interrupt service routine and then returned to its original val-
ue. The stack can be used to store the contents of the registers
involved.

eThe stack is used in storing linkage information between a subrou-
tine and its calling program. The JSR instruction, used in calling a
subroutine, requires the specification of a linkage register along with
the entry address of the subroutine. The content of this linkage regis-
ter is stored on the stack, so as not to be lost, and the return address
is moved from the PC to the linkage register. This provides a pointer
back to the calling program so that successive arguments may be
transmitted easily to the subroutine.

elf no arguments need be passed by stacking them after the JSR
instruction, the PC may be used as the linkage register. In this case,
the result of the JSR is to move the return address in the calling
program from the PC onto the stack and replace it with the entry
address of the called subroutine.

ein many cases, the operations performed by the subroutine can be
applied directly to the data located on or pointed to by a stack
without the need ever actually to move the data into the subroutine
area.

91

PROGRAMMING TECHNIQUES

;CALLING PROGRAM

MOV SP,R1 ;R11S USED AS THE STACK
JSR PC,SUBR ;POINTER HERE.
;SUBROUTINE
ADD (R1)+,(R1) ;ADD ITEM #1 to #2,PLACE
;RESULTIN ITEM #2,
;R1 POINTS TO
JITEM #2 NOW

Because the PDP-11 hardware already uses general purpose register
R6 to point to a stack for saving and restoring PC and processor status
word (PS) information, it is convenient to use this same stack to save
and restore immediate results and to transmit arguments to and from
subroutines. Using R6 in this manner permits extreme flexibility in
nesting subroutines and interrupt service routines.

Since arguments may be obtained from the stack by using some form
of register indexed addressing, it is sometimes useful to save a tempo-
rary copy of R6 in some other register which has been saved at the
beginning of a subroutine. If R6 is saved in R5 at the beginning of the
subroutine, R5 may be used to index the arguments while R6 is free to
be incremented and decremented in the course of being used as a
stack pointer. If R6 had been used directly as the base for indexing
and not “copied,” it might be difficult to keep track of the position in
the argument list, since the base of the stack would change with every
autoincrement/decrement which occurs.

However, if the contents of R6 (SP) are saved in R5 before any argu-
ments are pushed onto the stack, the position relative to R5 would
remain constant.

Return from a subroutine also involves the stack, as the return instruc-
tion, RTS, must retrieve information stored there by the JSR.

When a subroutine returns, it is necessary to “clean up” the stack by
eliminating or skipping over the subroutine arguments. One way this
can be done is by insisting that the subroutine keep the number of
arguments as its first stack item. Returns from subroutines then in-
volve calculating the amount by which to reset the stack pointer, reset-
ting the stack pointer, then storing the original contents'of the register
which was used as the copy of the stack pointer.

eStack storage is used in trap and interrupt linkage. The program
counter and the processor status word of the executing program are
pushed on the stack.

92

PROGRAMMING TECHNIQUES

eWhen using the system stack, nesting of subroutines, interrupts, and
traps to any level can occur until the stack overflows its legal limits.

eThe stack method is also available for temporary storage of any kind
of data. It may be used as a LIFO list for storing inputs, intermediate
results, etc. ’

As an example of stack use consider this situation: a subroutine
(SUBR) wants to use registers 1 and 2, but these registers must be
returned to the calling program with their contents unchanged. The
subroutine could be written as follows:

Assembler
Address Octal Code Syntax Comments
076322 010167 SUBR: MOV R1,TEMP1 ;save R1
076324 000074 *
076326 010267 MOV R2,TEMP2 ;save R2
076330 000072 *
076410 016701 MOV TEMP1,R1 ;restore R1
076412 000006 *
076414 0167902 MOV TEMP2,R2 ;restore R2
076416 000004 *
076420 000297 RTS PC
076422 000000 TEMP1:0
076424 000000 TEMP2:0

* Index Constants

OR: Using the Stack
R3 has been previously set to point to the end of an unused block of
memory.

Assembler
Address Octal Code Syntax Comments
010020 010143 SUBR: MOV R1,—(R3) ;pushR1
010022 010243 MOV R2,—(R3) ;push R2
010130 012302 MOV (R3)+,R2 ;pop R2
010132 012301 MOV (R3)+,R1 ;pop R1
010134 000207 RTS PC

93

PROGRAMMING TECHNIQUES

Note: In this case R3 was used as a stack pointer.

The second routine uses four fewer words of instruction code and two
words of temporary “stack” storage. Another routine could use the
same stack space at some later point. Thus, the ability to share tempo-
rary storage in the form of a stack is a way to save on memory use.

As another example of stack use, consider the task of managing an
input buffer from a terminal. As characters come in, you may wish to
delete characters from the line; this is accomplished very easily by
maintaining a byte stack containing the input characters. Whenever a
backspace is received, a character is “popped” off the stack and elimi-
nated from consideration. In this example, you have the choice of
“popping” characters to be eliminated by using either the MOVB
(MOVE BYTE) or INC (INCREMENT) instructions.

001011
001010
001007
001006
001005
001004
001003
001002
001001

INC R3

DIMliZzlof4fu|lc|o

<rs [oowoz]

NloImlZ|lo|l4|lu|lc|o

<3 [ooior]

Figure 5-3 Byte Stack used as a Character Buffer

NOTE that in this case the increment instruction (INC) is preferable to
MOVB, since it accomplishes the task of eliminating the unwanted
character from the stack by readjusting the stack pointer without the
need for a destination location. Also, the stack pointer (SP) used in this
example cannot be the system stack pointer (R6) because R6 may
point only to word (even) locations.

DELETING ITEMS FROM A STACK
To delete one item:

INCSP or TSTB(SP)+ for a byte stack
To delete two items:

ADD#2,SP or TST(SP)+ for word stack
To delete fifty items from a word stack:
ADD #100.,SP

94

PROGRAMMING TECHNIQUES

SUBROUTINE LINKAGE

The contents of the linkage register are saved on the system stack
when a JSR is executed. The effect is the same as if a MOV reg,—(R8)
had been performed. Following the JSR instruction, the same register
is loaded with the memory address (the contents of the current'PC),
and a jump is made to the entry location specified.

Figure 5-4 gives the before and after conditions when executing the
subroutine instructions JSR R5,1064.

BEFORE AFTER
(R5)= 000132 (R5)= 001004
(R6)=001776 {R6)=001774
(PC)=(R7)=001000 (PC)=(R7)=00106 4
002000 nnnnnn 002000 nnnnnn
001776 mmmmmm <SP r 001776 J 001776 mmmmmm
001774 001774 000132 <SP 001774 J
001772 oo1772

Figure 5-4 JSR

Because the PDP-11 hardware already uses general purpose register
R6 to point to a stack for saving and restoring PC and PS (processor
status word) infermation, it is convenient to use this same stack to
save and restore intermediate results and to transmit arguments to
and from subroutines. Using R6 this way permits nesting subroutines
and interrupt service routines.

Return from a Subroutine

An RTS instruction provides for a return from the subroutine to the
calling program. The RTS instruction must specify the same register
as the one the JSR instruction used in the subroutine call. When the
RTS is executed, the register specified is moved to the PC, and the top
of the stack to be placed in the register specified. Thus, a RTS PC has
the effect of returning to the address specified on the top of the stack.

PDP-11 Subroutine Advantages
There are several advantages to the PDP-11 subroutine calling pro-
cedure, affected by the JSR instruction.

e Arguments can be passed quickly between the calling program and
the subroutine.

elf there are no arguments, or the arguments are in a general register
or on the stack, the JSR PC,DST mode can be used so that none of
the general purpose registers are used for linkage.

95

PROGRAMMING TECHNIQUES

eMany JSRs can be executed without the need to provide any saving
procedure for the linkage information, since all linkage information is
automatically pushed onto the stack in sequential order. Returns can
be made by automatically popping this information from the stack in
the order opposite to the JSRs.

Such linkage address bookkeeping is called automatic “nesting” of
subroutine calls. This feature enables you to construct fast, efficient
linkages in a simple, flexible manner. It also permits a routine to call
itself in those cases where this is meaningful.

INTERRUPTS

An interrupt is similar to a subroutine call, except that it is initiated by
the hardware rather than by the software. An interrupt can occur after
the execution of an instruction.

Interrupt-driven techniques are used to reduce CPU waiting time. In
direct program data transfer, the CPU loops to check the state of the
DONE/READY flag (bit 7) in the peripheral interface. Using interrupts,
the system actually ignores the peripheral, running its own low-priority
program until the peripheral initiates service by setting the DONE bit.
The interrupt enable bit in the control status register must have been
set at some prior point. The CPU completes the instruction being
executed and then interrupted and vectors to an interrupt service
routine. The service routine will transfer the data and may perform
calculations with it. After the interrupt service routine has been com-
pleted, the computer resumes the program that was interrupted by the
peripheral’s high-priority request.

With interrupt service routines, linkage information is passed so thata
return to the main program can be made. More information is neces-
sary for an interrupt sequence than for a subroutine call because of
the random nature of interrupts. The complete machine state of the
program immediately prior to the occurrence of the interrupt must be
preserved in order to return to the program without any noticeable
effects. This information is stored in the processor status word (PS).
Upon interrupt, the contents of the program counter (PC) (address of
next instruction) and the PS are automatically pushed onto the R6
system stack. The effect is the same as if:

MOV PS,—(SP) :Push PS
MOV PC,—(SP) :Push PC

had been executed.

The new contents of the PC and PS are loaded from two preassigned
consecutive memory locations which are called “vector addresses.”

96

PROGRAMMING TECHNIQUES

The first word contains the interrupt service routine entry address (the
address of the service routine program sequence), and the second
word contains the new PS which will determine the machine status,
including the operational mode and register set to be used by the
interrupt service routine. The contents of the vector address are set
under program control.

After the interrupt service routine has been completed, an RTI (return
from interrupt) is performed. The top two words of the stack are auto-
matically “popped” and placed in the PC and PS respectively, thus
resuming the interrupted program.

Nesting

Interrupts can be nested in much the same manner that subroutines
are nested. In fact, it is possible to nest any arbitrary mixture of su-
broutines and interrupts without any confusion. By using the RTI and
RTS instructions, respectively, the proper returns are automatic.

1. Process 0 is running; SP is SP—=PO
pointing to location PO.
o
2. Interrupt stops process 0 with Fo —
PC = PCO0, and status = PSO0; . P
starts process 1.
o}
3. Process 1 uses stack for tem- F —
porary storage (TEO, TE1). oo
TEO
SP—s TE{
o
4. Process 1 interrupted with PC PO —
= PC1 and status = PS1; pro- —
cess 2 is started. s
TE!
PS1
SP—> PC1
9]

97

PROGRAMMING TECHNIQUES

5. Process 2 is running and does
a JSR R7,A to subroutine A

with PC = PC2.

6. Subroutine A is running and
uses stack for temporary sto-

rage.

7. Subroutine A releases the
temporary storage holding

TA1and TA2.

8. Subroutine A returns control
to process 2 with an RTS R7;

PCisresetto PC2.

98

PO

SP—s

PO

sP—s

PO

SP—»

PO

PsSO

PCO

TEO

TEY

PSt

PC1

PSO

PCO

TEO

TE

PSt

PC1

Pc2

TAY

TAZ

PsO

PCO

TEO

PSt

PC1

pc2

. PsoO

PCO

TEO

TEY

PC1

PROGRAMMING TECHNIQUES

9. Process 2 completes with an PO
RT! instructions (dismisses in- —
terrupt) PC is reset to PC(1) o
and status is reset to PS1; sp—e T
process 1 resumes.
o

10. Process 1 releases the tempo- Po
rary storage holding TEO and e
TE1.
(o]

SP—ePO

11. Process 1 completes its oper-
ation with an RTI,PC is reset to
PCO, and status is reset to
PSO.

Figure 5-5 Nested Interrupt Service Routines and Subroutines
Note that the area of interrupt service programming is intimately in-
volved with the concept of CPU and device priority levels.

REENTRANCY

Other advantages of the PDP-11 stack organization are obvious in
programming systems that are engaged in concurrent handling of
several tasks. Multi-task program environments range from simple
single-user applications which manage a mixture of I/0 interrupt ser-
vice and background data processing, as in RT-11, to large complex
multi-programming systems that manage an intricate mixture of exe-
cutive and multi-user programming situations, as in RSX-11. In all
these situations, using the stack as a programming technique pro-
vides flexibility and time/memory economy by allowing many tasks to
use a single copy of the same routine with a simple straightforward
way of keeping track of complex program linkages.

- The ability to share a single copy of a program among users or among

tasks is called reentrancy. Reentrant program routines differ from

99

PROGRAMMING TECHNIQUES

ordinary subroutines in that it is not necessary for reentrant routines to
finish processing a given task before they can be used by another
task. Multiple tasks can exist at any time in varying stages of comple-
tion in the same routine. Thus the following situation may occur.

MEMORY MEMORY
PROGRAM PROGRAM 1
:gg:::’g SUBROUTINE A —
prosRam 2
]
procaa 3
PDP-11 Approach Conventional Approach
Programs 1, 2, and 3 can share A separate copy of Subroutine A
Subroutine A. must be provided for each pro-
gram.
Figure 5-6 Reentrant Routines
Reentrant Code

Reentrant routines must.-be written in pure code, code that is not self-
modifying and consists entirely of instructions and constants.

Pure code (any code that consists exclusively of instructions and
constants) may be used when writing any routine, even if the complet-
ed routine is not to be reenterable. The value of using pure code
whenever possible is that the resulting code:

®is generally considered easier to debug
@ can be kept in read-only memory (is read-only protected)

Using reentrant code, control of a routine can be shared as follows:

REENTRANT

ROUTINE Q

TASK B

Figure 5-7 Sharing Control of a Routine

100

-

PROGRAMMING TECHNIQUES

eTask A requests processing by Reentrant Routine Q.

eTask A temporarily relinquishes control of Reentrant Routine Q be-
fore it completes processing.

e Task B starts processing the same copy of Reentrant Routine Q.
e Task B completes processing by Reentrant Routine Q.

eTask A regains use of Reentrant Routine Q and resumes where it
stopped.

Writing Reentrant Code

In an operating system environment, when one task is executing and is
interrupted to allow another task to run, a context switch occurs which
causes the processor status word and current contents of the general
purpose registers to be saved and replaced by the appropriate values
for the task being entered. Therefore, reentrant code should use the
GPRs and the stack for any counters, pointers, or data that must be
modified or manipulated in the routine.

The context switch occurs whenever a new task is allowed to execute.
It causes all of the GPRs, the PS, and often other task-related informa-
tion to be saved in an impure area, then reloads these registers and
locations with the appropriate data for the task being entered. Notice
that one consequence of this is that a new stack pointer value is load-
ed into R6, therefore causing a new area to be used as the stack when
the second task is entered.

The following should be observed when writing reeentrant code:

e All data should be in or pointed to by one of the general purpose
registers.

e A stack can be used for temporary storage of data or pointers to
impure areas within the task space. The pointer to such a stack
would be stored in a GPR.

e Parameter addresses should be used by indexing and indirect refer-
ence rather than by putting them into instructions within the code.

eWhen temporary storage is accessed within the progam, it should be
by indexed addresses, which can be set by the calling task in order to
handle any possible recursion.

Use of Reentrant Code

Reentrant code is used whenever more than one task may reference
the same code without requiring that each task complete processing
with the code before the next may use it.

101

PROGRAMMING TECHNIQUES

COROUTINES

In some programming situations it happens that several program
segments or routines are highly interactive. Control is passed back
and forth between the routines, each going through a period of sus-
pension before being resumed. Since the routines maintain a symme-
tric relationship with each other, they are called coroutines. N

Coroutines are two program sections, either subordinate to the other,
which can call each other. The nature of the call is “I have processed
all I can for now, so you can execute until you are ready to stop, then |
will continue.”

The coroutine call and return are identical, each being a jump to
subroutine instruction with the destination address being on top of the
stack and the PC serving as the linkage register, i.e.,

JSR PC,@(R6)+

Coroutine Calls

The coding of coroutine calls is made simple by the PDP-11 stack
feature. Initially, the entry address of the coroutine is placed on the
stack and from that point the

JSR PC,@(R6)+

instruction is used for both the call and the return statements. The
result of this JSR instruction is to exchange the contents of the PC and
the top element of the stack, and so permit the two routines to swap
control and resume operation where each was terminated by the
previous swap.

For example:
Routine A Stack Routine B Comments
LOC is pushed
onto the stack
. . to prepare for
MOV #LOC,—(SP) LOC <SP the corou-

tine call.

102

1

|-

PROGRAMMING TECHNIQUES

LOC:
JSRPC,@(SP)+ PCO <SP . When the call
(PCO) . is executed,
the PC from
routine A is
pushed on the
stack and exe
cution contin-
ues at LOC.
JSRPC,@(SP)+ Routine B can
PC1 SP (PC1) return control
. to routine A
by another
coroutine call.
PCO is popped
from the stack
and execution
resumesin
routine A just
after the call
to Routine B,
i.e., at PCO.
PC1is saved
on the stack
for a later
return to
Routine B.

Figure 5-8 Coroutine Example

Notice that the coroutine linkage cleans up the stack with each transfer
of control.

Coroutines Versus Subroutines

e A subroutine can be considered to be subordinate to the main or
calling routine, but a coroutine is considered to be on the same level,
as each coroutine calls the other when it has completed current
processing.

e A subroutine executes, when called, to the end of its code. When
called again, the same code will execute before returning. A corou-
tine executes from the point after the last call of the other coroutine.
Therefore, the same code will not be executed each time the corou-
tine is called. For example,

103

PROGRAMMING TECHNIQUES

CORQUTINES MAIN _PROGRAMS SUBROUTINES
JSR PC.@ (SP)+ ———e, JSR Rn, LOC
JSRPC,@ (SP)+
RTS
JSR PC,@ (SP)+
JSR Rn, LOC
JSR PC,@ (SP)+

Figure 5-9 Coroutines vs. Subroutines

e The call and return statements for coroutines are the same:
JSR PC,@(SP)+

This one instruction also cleans up the stack with each call.

The last coroutine call will leave an address on the stack that must be
popped if no further calls are to be made.

®Each coroutine call returns to the coroutine code at the point after
the last exit with no need for a specific entry point label, as would be
required with subroutines.

Using Coroutines

e Coroutines should be used whenever two tasks must be coordinated
in their execution without obscuring the basic structure of the pro-
gram. For example, in decoding a line of assembly language code,
the results at any one position might indicate the next process to be
entered. Where a label is detected, it must be processed. If no label
is present, the operator must be located, etc.

eCoroutines should be employed to add clarity to the process being
performed, to ease in the debugging phase, etc.

Examples

An assembler must perform a lexicographic scan of each assembly
language statement during pass one of the assembly process. The
various steps in such a scan should be separated from the main pro-
gram flow to add to the program clarity and to aid in debugging by
isolating many details. Subroutines would not be satisfactory here, as

104

PROGRAMMING TECHNIQUES

too much information would have to be passed to the subroutine each
time it was called. This subroutine would be too isolated. Coroutines
could be effectively used here with one routine being the assembly-
pass-one routine and the other extracting one item at a time from the

current input line.

ROUTINE_A ROUTINE B
START AND SKIP
BLANKS
NONBLANK
READ NAME Jl —{7Rocsss NAME
[sxw BLANKS
rpkocsss MNEMONICS JL Jl READ MNEMONICS |

1

IT?EAD ADDRESSES LINE
SEMI-COLON TERMINATOR

rsxw COMMENT J' —]rEND

Figure 5-10 Coroutine Path

Coroutines can be utilized in 1/0 processing. The example shows co-
routines used in double-buffered 1/0 using IOX. The flow of events

might be described as:

Write 01

Read |1

Process 12
then

Write 02

Read 12

Process |1

concurrently

concurrently

Figure 5-11 illustrates a coroutine swapping interaction.

Routine #1 is operating, it then

executes:

MOV #PC2,—(R6)
JSRPC,@(R6)+

with the following results:

NI

105

I

PROGRAMMING TECHNIQUES

1. PC2 is popped from the stack
and the SP autoincremented. sP—e Pc2
2. SPisautodecremented and 1
the old PC (i.e. PC1) is . Pc2
pushed. Py
3. Control is transferred to the
location PC2 (i.e. Routine #2). |
Routine #2 is operating, it then SP—e ot |
executes:

JSR PC,@(R6)+
with the result that PC2 is
exchanged for PC1 on the
stack and control is
transferred back to Routine #1.

Figure 5-11 Coroutine Interaction

RECURSION

An interesting aspect of a stack facility, other than its providing for
automatic handling of nested subroutines and interrupts, is that a
program may call on itself as a sub-routine just as it can call on any
other routine. Each new call causes the return linkage to be placed on
the stack, which, as it is a last-in/first-out queue, sets up a natural
unraveling to each routine just after the point of departure.

Typical flow for a recursive routine might be something like this:

MAIN
PROGRAM

Figure 5-12 Recursive Routine Flow

The main program calls function one, SUB 1, which calls function two,
SUB 2, which recurses once before returning.

106

|-

PROGRAMMING TECHNIQUES

Example:

DNCF: ’
BEQ 1% :TO EXIT RECURSIVE LOOP
JSR R5,DNCF ;RECURSE

1$ ’
RTS R5 ;RETURN TO 1$ FOR

;EACH CALL, THENTO
;MAIN PROGRAM

The routine DNCF calls itself until the variable tested becomes equal
to zero, then it exits to 1$ where the RTS instruction is executed,
returning to the 1$ once for each recursive call and one final time to
return to the main program.

In general, recursion techniques will lead to slower programs than the
corresponding interactive techniques, but the recursion will give
shorter programs in memory space used. Both the brevity and clarity
produced by recursion are important in assembly language programs.

Uses of Recursion

Recursion can be used in any routine in which the same process is
required several times. For example, a function to be integrated may
contain another function to be integrated, i.e., to solve for XM

where: X
XM=1+ f F(X)
o)
and: (o]

Fo0 = [6
X

Another use for a recursive function could be in calculating a factorial
function because

FACT(N) = FACT(N—1)*N -

Recursion should terminate when N = 1.

The macro processor within MACRO-11, for example, is itself recur-
sive, as it can process nested macro definitions and calls. For exam-

107

PROGRAMMING TECHNIQUES

ple, within a macro definition, other macros can be called. When a
macro call is encountered within definition, the processor must work
recursively, i.e., to process one macro before it is finished with anoth-
er, then to continue with the previous one. The stack is used for a
separate storage area for the variables associated with each call to the
procedure.

As long as nested definitions of macros are available, it is possible for
a macro to call itself. However, unless conditionals are used to termi-
nate this expansion, an infinite loop could be generated.

PROCESSOR TRAPS

There are a series of errors and programming conditions which will
cause the central processor to trap to a set of fixed locations. These
include power failure, odd addressing errors, stack errors, time out
errors, memory parity errors, memory management violations, float-
ing point processor exception traps, use of reserved instructions, use
of the T bit in the processor status word, and use of the IOT, EMT, and
TRAP instructions.

Power Failure

Whenever AC power drops below 95 volts for 115v power (190 volts for
230v) or outside a limit of 47 to 73 Hz, as measured by DC voltage, the
power-fail sequence is initiated. The central processor automatically
traps to location 24 and the power-fail program has 2 msec. to save all
volatile information (data in registers), and condition peripherals for
power fail.

When power is restored, the processor traps to location 24 and exe- -
cutes the power-up routine to restore the machine to its state prior to
power failure.

Odd Addressing Errors

This error occurs whenever a program attempts to execute a word
instruction on an odd address (in the middle of a word boundary). The
instruction is aborted and the CPU traps through location 4.

Time-out Errors

These errors occur when a master synchronization pulse is placed on
the UNIBUS and there is no slave pulse within a certain length of time.
This error usually occurs in attempts to address non-existent memory
or peripherals.

The offending instruction is aborted and the processor traps through
location 4.

108

PROGRAMMING TECHNIQUES

Reserved Instructions
There is a set of illegal and reserved instructions which cause the

processor to trap through location 10.

Vector Address and Trap Errors

000 (reserved)

004 CPU errors

010 lllegal and reserved instructions
014 BPT, breakpoint trap

020 10T, input/output trap

024 Powerfail

030 EMT, emulator trap

034 TRAP instruction

TRAP INSTRUCTIONS

Trap instructions provide for calls to emulators, 1/0 monitors, debug-
ging packages, and user-defined interpreters. A trap is effectively an
interrupt generated by software. When a trap occurs, the contents of
the current program counter (PC) and program status word (PS) are
pushed onto the processor stack and replaced by the contents of a 2-
word trap vector containing a new PC and new PS. The return se-
quence from a trap involves executing an RTI or RTT instruction which
restores the old PC and old PS by popping them from the stack. Trap
vectors are located at permanently assigned fixed addresses.

The EMT (trap emulator) and TRAP instructions do not use the low-
order byte of the word in their machine language representation. This
allows user information to be transferred in the low-order byte. The
new value of the PC loaded from the vector address of the TRAP or
EMT instructions is typically the starting address of a routine to access
and interpret this information. Such a routine is called a trap handler.

The trap handler must accomplish several tasks. It must save and
restore all necessary GPRs, interpret the low byte of the trap instruc-
tion and call the indicated routine, serve as an interface between the
calling program and this routine by handling any data that need be
passed between them, and, finally, cause the return to the main
routine.

Uses of Trap Handlers

The trap handler can be useful as a patching technique. Jumping out
to a patch area is often difficult because a 2-word jump must be
performed. However, the 1-word TRAP instruction may be used to
dispatch to patch areas. A sufficient number of slots for patching

109

PROGRAMMING TECHNIQUES

should first be reserved in the dispatch table of the trap handler. The
jump can then be accomplished by placing the address of the patch
area into the table and inserting the proper TRAP instruction where
the patch is to be made.

The trap handler can be used in a program to dispatch execution to
any one of several routines. Macros may be defined to cause ‘the
proper expansion of a call to one of these routines. For example,

.MACRO SUB2 ARG
MOV ARG, RO
TRAP +1

.ENDM

When expanded, this macro sets up the one argument required by the
routine in RO and then causes the trap instruction with the number 1 in
the lower byte. The trap handler should be written so that it recognizes
a 1 as a call to SUB2. Notice that ARG here is being transmitted to
SUB2 from the calling program. It may be data required by the routine
or it may be a pointer to a longer list of arguments.

In an operating system environment like RT-11, the EMT instruction is
used to call system or monitor routines from a user program. The
monitor of an operating system necessarily contains coding for many
functions, i.e., 170, file manipulation, etc. This coding is made accessi-
ble to the program through a series of macro calls, which expand into
EMT instructions with low bytes indicating the desired routine, or
group of routines to which the desired routine belongs. Often a GPR is
designated to be used to pass an identification code to further indicate
to the trap handler which routine is desired. For example, the macro
expansion for a resume execution command in RT-11 is as follows:

.MACRO .RSUM
CMs, 2.
.ENDM

and CM3 is defined as

.MACRO CM3 CHAN, CODE

MOV #CODE *400,R0
JIFNB CHAN,BISB CHAN,RO

EMT 374

.ENDM

Notice the EMT low byte is 374. This is interpreted by the EMT handler
to indicate a group of routines. Then the contents of RO (high byte) are
tested by the handler to identify exactly which routine within the group
is being requested, in this case routine number 2. (The CM3 call of the
.RSUM is set up to pass the identification code.)

110

PROGRAMMING TECHNIQUES

Summary of PDP-11 Processor Trap Vectors:
VECTOR ADDRESS FUNCTION SERVED
4 lllegal instructions (JSR, JMP for mode 0)
Bus errors (odd address error, timeout)
Stack limit (Red Zone, Yellow Zone)
lllegal internal address
Microbreak

10 Reserved instruction
XFC with UCS disabled
SPL, MTPS, MFPS
FADD, FSUB, FMUL, FDIV
HALT in user mode

14 Trace (T bit)
20 10T
24 Power fail
30 EMT
34 TRAP
114 Cache parity error

UNIBUS memory parity error
UCS parity error

244 Floating point exception
250 Memory management (KT) abort

CONVERSION ROUTINES

Almost all assembly language programs require the translation of data
or results from one form to another. Coding that performs such a
transformation will be called a conversion routine in this handbook.
Several commonly used conversion routines are included in the fol-
lowing pages.

Almost all assembly language programs involve some type of conver-
sion routines, octal to ASCII, octal to decimal, and decimal to ASCII
being a few of the most widely used.

Arithmetic multiply and divide routines are fundamental to many con-
version routines.

Division is typically approached in one of two ways.

1. The division can be accomplished through a combination of rotates
and subtractions.

111

PROGRAMMING TECHNIQUES

Examples:
Assume the following code and register data; to make the example
easier, also assume a 3-bit word.

DIV: MOV #3,—(SP) ;SET UP DIGIT COUNTER
CLR —(SP) ;CLEAR RESULT
1$ ASL (SP)
ASL R1
ROL RO
CMP RO,R3
BLT 2%
SUB R3,R0 ;RO CONTAINS REMAINDER
INC (SP) JINCREMENT RESULT
2% DEC 2 (SP) ;DECREMENT COUNTER
BNE $1
Therefore, to divide 7 by 2:
R0O=000 remainder
R1=111 seven-multiplicand
R3=010 two-multiplier
C bit=0
STACK
011 counter
000 quotient

Following through the coding, the quotient, remainder, and div-
idend all shift left, manipulating the most significant digit first, etc.

At the conclusion of the routine:

RO=001 remainder
R1=000

R3=010

STACK

000 counter
011 quotient

2. A second method of division occurs by repeated subtraction of the
powers of the divisor, keeping a count of the number of subtrac-
tions at each level.

Example:

To divide 221,,by 10, first try to subtract powers of 10 until a non-
negative value is obtained, counting the number of subtractions of
each power.

112

T

PROGRAMMING TECHNIQUES

221
—1000

negative so go to next lower power, count for 103=0.
221
~100

121 countfor 102=1.
~100

21 count=2
~100

negative, so reduce power.
count for 102=2
21
~10

11 countfor 10'=1.

count=2

negative, so count for 10'=2.

No lower power, so remainder is 1.
Answer = 022, remainder 1.

Multiplication can be done through a combipation of rotates and
additions or through repetitive additions.

Example:
Assume the following code and a 3-bit word.
CLR RO ;HIGH HALF OF ANSWER
MOV #3,CNT ;SET UP COUNTER
MOV R1,MULT,; ;MULTIPLICAND
MORE: RORR2

BCC NOW
ADD MULT,RO ;IF INDICATED,

113

PROGRAMMING TECHNIQUES

ADD

;MULTIPLICAND
NOW: ROR RO

RORR1

DEC CNT

BNE MORE
MULT: 0
CNT: 0

The following conditions exist for 6 times 3:

RO = 000 — high order half of result
R1 = 110 — multiplicand
R3 =011 — multiplier

After the routine is executed:

RO = 010 — high order half of result
R1 = 010 — low order half of result

R2 = 100

CNT =0

MULT = 110

Example:

Multiplication of RO by 50,4(101000).

MULS50: MOV R0O,—(SP)

ASL RO
ASL RO
ADD (SP)+,R0
ASL RO
ASL RO
ASL RO
RETURN

If RO contains 7:

RO =111
After execution;

RO = 100011000

(7*50, = 430,).
ASCII CONVERSIONS
The conversion of ASCII characters to the internal representation of a
number as well as the conversion of an internal number to ASCIl in 1/0
operations presents a challenge. The following routine takes the 16-bit

word in R1 and stores the corresponding six ASCII characters in the
buffer addressed by R2.

114

o

PROGRAMMING TECHNIQUES

OUT: MOV #5R0 ;LOOP COUNT
LOOP: MOV R1,—(SP) :COPY WORD INTO STACK
BIC #177770,@SP :ONE OCTAL VALUE
ADD #0,@SP :CONVERT TO ASCII
MOVB (SP)+,—(R2) :STORE IN BUFFER
ASR R1 'SHIFT
ASR Ri1 ; RIGHT
ASR Ri1 . THREE
DEC RO :TEST IF DONE
BNE LOOP :NO, DO IT AGAIN
BIC #177776,R1 :GET LAST BIT
ADD #0,R1 :CONVERT TO ASCII
MOVB R5,—(R2) :STORE IN BUFFER
RTS PC :DONE,RETURN

PDP-11 PROGRAMMING EXAMPLES

The programming examples on the following pages show how the
PDP-11 instruction set, the addressing modes, and the programming
techniques can be used to solve some simple problems. The format
used is either PAL-11 or MACRO-11.

115

.

PROGRAMMING TECHNIQUES

ydcLoL#
£4'0001#
cHeLL#
LH‘00.#

HILNIOd MOVLS LINI- ds"#

AOW

AOW

AOW

AOW

AOWN
00S6="

L%=0d
9%=dS

' 6%=6Y

¥%=7v4
€%=¢H
¢%=cH
L% =14
0%=04

0LOL-000} SO0140 SINILNOD WOHA:
012-002 SOOT40 SINILNOD LOVHLIENS:
I1dNVYXE DNINWVYHDOHd:

sjuawwo) pueiadQ

apos do

cloioo
0210
000L00
€0.210
¢L.000
colzelo
00,000
104210
005000
‘1dvi1s 90210
005000

200000
900000
S00000
00000
€00000

€00000.

100000
000000

jeqe Sjuajuo
weisboid

025000
¥15000
0Ls000
05000

005000

Ssalppy
weiboid

116

PROGRAMMING TECHNIQUES

oe-v

SM104 1TV S.LVHL:
S11NS3Yd Lovd1ans

MOVE HONVHSE LON 4I:
¢(ONIAAV Q3HSINIG-
HNIQAV LHV1S:

MOvE HONvHSE LON 4I:
¢{ONIAAY A3HSINIL-
DNIAAV LHVLS:

an3a

8°2°9'G 'y QHOM

000l =

S'v'e‘c'L adom

od‘sy

ZNNS
yd‘ceH
od‘+(gH)
LNNS
2d‘iy
SH +(1Y)

SH
o4

00.L=
1IVH

ans

3aNg
dNO
aay
IaNg
dNO
aav

H10
410

441a

‘CANS

‘HANS

005000

010000
00000
900000
500000
00000
000100

500000
00000
€00000
¢00000
100000
002000

000000
005091

G.€100
¥0€020
00€290
G.€100
¢010co
S01290

00500
000500

oLolioo
900100
00100
200100
000100

0L.000
90,000
0,000
¢€0.000
002000

95000
¥¥S000

¢¥S000
0¥S000
9€5000
¥€5000
¢€5000
0€5000

925000
¥2S000

117

START:

CHECK:

NEXT:

VALUES:

PROGRAMMING TECHNIQUES

;PROGRAM TO COUNT NEGATIVE NUMBERS

;INATABLE
;20. SIGNED WORDS

;BEGINNING AT LOC VALUES
;COUNT HOW MANY ARE NEGATIVE IN RO

R0=%0
R1=%1
R2=%2
SP=%6
PC=%7

.=500

MOV #.,SP

MOV #VALUE,R1

MOV #VALUES +40.,R2
CLRRO

TST (R1)+
BPL NEXT
INC RO

CMP R1,R2
BNE CHECK
HALT

0
.END

118

;SET UP STACK
;SET UP POINTER
;SET UP COUNTER

;TEST NUMBER
;POSITIVE?

;:NO, INCREMENT COUN-
» COUNTER

;YES, FINISHED?

;NO, GO BACK

;YES, STOP

T

PROGRAMMING TECHNIQUES

;PROGRAM TO COUNT ABOVE AVERAGE QUIZ SCORES
;LIST OF 16. QUIZ SCORES

;BEGINNING AT LOC SCORES

;KNOWN AVERAGE IN LOC AVRAGE

;COUNT IN RO SCORES ABOVE AVERAGE

RO=%0
R1=%1

R2=%2
R3=%3
SP=%6
PC=%7

.=500

START: MOV #.SP ;SET UP STACK
MOV #16.,R1 ;SET UP COUNTER
MOV #SCORES, R2 ;SET UP POINTER
MOV #AVRAGE,R3

CLR RO
CHECK: CMP (R2)+, (R3) ;COMPARE SCORE AND AVRAGE
BLENO ;LESS THAN OR EQUAL
;TO AVRAGE?
INC RO ;NO, COUNT
NO: DECR1 ;YES, DECREMENT COUNTER
BNE CHECK ;FINISHED? NO, CHECK
HALT ;YES, STOP
AVERAGE: 65.

SCORES* 25.,70.,100.,60.,80.,80.,40.
55.,75.,100.,65.,90.,70.,65.,70.

.END

119

START:

ECHO:

OUT:

SAVE:

PROGRAMMING TECHNIQUES

;PROGRAMMING EXAMPLE

;ACCEPT (IMMEDIATE ECHO) AND
;STORE 20. CHARS

;FROM THE KEYBOARD, OUTPUT CR & LF
;ECHO ENTIRE STRING FROM STORAGE

RO=%0
R1=%1

SP=%6

CR=15

LF=12

TKS=177560
TKB=TKS+2
TPS=TKB+2
TPB=TPS+2

TITLE ECHO

.=1000

MOV #.SP

MOV #SAVE+2,R0
MOV #20.R1

TSTB @#TKS

BPL IN

TSTB @#TPS

BPL ECHO

MOVB @#TKB,@#TPB
MOVB @#TKB,(R0)+
DEC Rt

BNE N

MOV #SAVE,RO
MOV #22.R1

TSTB @#TPS

BPL ouT

MOVB (RO)+,@#TPB
DEC Ri

BNE OUT

HALT

BYTE CR,LF
.=.+420,

.END

120

;INITIALIZE STACK POINTER
;SA OF BUFFER
;BEYONDCR & LF
;CHARACTER COUNT

;CHAR IN BUFFER?

;IF NOT BRANCH BACK
;AND WAIT

;CHECK TELEPRINTER
;READY STATUS

;ECHO CHARACTER
;STORE CHARACTER AWAY

;FINISHED INPUTTING?

;SA OF BUFFER INCLUDING
;CR&LF

;COUNTER OF BUFFER
;INCLUDING CR&LF

;CHECK TELEPRINTER
;READY STATUS

;OUTPUT CHARACTER

;FINISHED OUTPUTTING?

INPUT:

OUT:

PROGRAMMING TECHNIQUES

;PROGRAMMING EXAMPLE
;SUBROUTINE TO INPUT TEN VALUES
MOV #BUFFER,RO ;SET UP SA OF

;STORAGE BUFFER
MOV #-10.,R1 ;SET UP COUNTER
TSTB @#TKS ;TEST KYBD READY STATUS
BPLIN
TSTB @#TPS ;TEST TTO READY STATUS
BPL OUT

MOVB @#TKB,@#TPB;ECHO CHARACTER
MOVB @#TKB,(R0)+ :STORE CHARACTER
INC R1 :INC COUNTER

BNE IN

RTS PC EXIT

121

SORT:
NEXT:

LOOP:

LT:

GT:

INSERT:

COUNT:
LINE1:

LINE2:

BUFFER:

PROGRAMMING TECHNIQUES

:PROGRAMMING EXAMPLE
:SUBROUTINE TO SORT TEN VALUES
MOV #-10.,R4

MOV COUNT,R3

MOV #BUFFER+9.,R0

ADD R3,R0

MOVB (R0)+,R1

CMPB (R0)+,R1

BGEGT

MOVB —(R0),R2

MOVB R1,(R0)+

MOV R2,R1

INC R3

BNE LOOP

MOVB R1,BUFFER+10.(R4)

INC R4

INC COUNT

BNE NEXT

MOV #-9.,COUNT ;RESTORE LOCATION COUNT
RTS PC EXIT

.WORD -9.

.ASCII/INPUT ANY TEN SINGLE DIGIT VALUES (0-9); I'll/

.ASCII/SORT AND OUTPUT THEM IN/
.ASCII/SMALLEST TO LARGEST ORDER./
.=.+10.

.END INITSP ;FINISHED!!!

122

INITSP:

PROGRAMMING TECHNIQUES

;PROGRAMMING EXAMPLE

;SUBROUTINE EXAMPLE

;INPUT TEN VALUES, SORT, AND

;OUTPUT THEM IN SMALLEST TO LARGEST ORDER

R0=%0
R1=%1
R2=%2
R3=%3
R4="%4
R5=%5
SP=%6
PC=%7
TKS=177560

(address of teletype control status register)
TKB=TKS+2 — (teletype data buffer register)

TPS=TKB+2

(teletype output control and status registers)
TPB=TPS+2 — (teletype output data buffer)

.=3000

MOV #.,SP
JSRPC,CRLF
JSR R5, OUTPUT
LINE1

69.

JSR PC,CRLF
JSRR5,0UTPUT
LINE2

26.

JSR PC,CRLF
JSR PC,INPUT
JSR PC,SORT
JSR PC,CRLF
JSRR5,0UTPUT
BUFFER

10.
JSRPC,CRLF
HALT

;INITIALIZE STACK POINTER
;GO TO CRLF SUBROUTINE
;GO TO OUTPUT SUBROUTINE
;SA OF LINE 1 BUFFER
;NUMBER OF OUTPUTS

;GO TO CRLF SUBROUTINE
;GO TO OUTPUT SUBROUTINE
;SA OF LINE 2 BUFFER
;NUMBER OF OUTPUTS

;GO TO CRLF SUBROUTINE
;GO TO INPUT SUBROUTINE
;GO TO SORT SUBROUTINE
;GO TO CRLF SUBROUTINE
;GO TO OUTPUT SUBROUTINE
;INPUT BUFFER AREA
;NUMBER OF OUTPUTS

;THE END!!

123

PROGRAMMING TECHNIQUES

;PROGRAMMING EXAMPLE
;SUBROUTINE TO OUTPUTACR&LF

CRLF: TSTB @#TPS ;TEST TTO READY STATUS
BPL CRLF
MOVB #15,@#TPB ;OUTPUT CARRIAGE RETURN
LNFD: TSTB @Q#TPS ;TEST TTO READY STATUS
BPL LNFD
MOVB #12,@#TPB ;OUTPUT LINE FEED
RTS PC EXIT

124

PROGRAMMING TECHNIQUES

;SUBROUTINE TO OUTPUT A
;VARIABLE LENGTH MESSAGE

OUTPUT: MOV (R5)+,R0 ;PICK UP SA OF DATA BLOCK
MOV (R5)+,R1 ;PICK UP NUMBER OF OUTPUTS
NEG R1 iNEGATEIT
AGAIN: TSTB @Q#TPS ;TEST TTO READY STATUS
BPL AGAIN
MOVB (R0)+,@#TPB ;OUTPUT CHARACTER
INC R1 ;BUMP COUNTER
BNE AGAIN
RTS R5

125

PROGRAMMING TECHNIQUES

LOOPING TECHNIQUES

PROGRAM SEGMENTS BELOW USED TO CLEAR A 50.WORD TA-
BLE

1. AUTOINCREMENT (POINTER ADDRESS IN GPR)

RO=%0
MOV #TBL,RO
LOOP: CLR (RO)+
CMP RO,#TBL+100.
BNE LOOP

2. AUTODECREMENT (POINTER AND LIMIT VALUES IN GPR)

RO=%0
R1=%1
MOV #TBL,R0
MOV #TBL+100.,R1
LOOP: CLR — (R1)
CMP R1,RO0
BNE LCOP

3. COUNTER (DECREMENTING A GPR CONTAINING COUNT)

R0=%0

R1=%1

MOV #TBL,R0

MOV #50.,R1
LOOP: CLR (RO)+

DEC Rt

BNE LOOP

4. INDEX REGISTER MODIFICATION (INDEXED MODE; MODIFYING
INDEX VALUE)

RO=%0

CLR RO
LOOP: CLR TBL (R0)

ADD #2,R0

CMP RO,#100.

BNE LOOP

126

PROGRAMMING TECHNIQUES

5. FASTER INDEX REGISTER MODIFICATION (STORING VALUES IN

GPR)

LOOP:

RO=%0
R1=%1
R2=%2

MOV #2,R1
MOV #100.,R2
CLRRO

CLR TBL (RO)
ADD R1,R0
CMP RO,R2
BNE LOOP

6. ADDRESS MODIFICATION (INDEXED MODE; MODIFYING BASE

ADDRESS)

LOOP:

RO=%0

MOV #TBL,RO

CLR 0 (RO)

ADD #2,LOOP+2
CMP LOOP+2,#100.
BNE LOOP

127

128

s

CHAPTER6
PDP-11/04, PDP-11/34

PDP-11/04

The PDP-11/04 is the low-end member of the PDP-11 family of pro-
cessors. It has most of the capabilities and features of the 11/34, and,
except for the CPU circuit boards, is nearly the same, which is why the
two processors are discussed together. The PDP-11/04 CPU is so
compact that the entire CPU logic is contained on one circuit board.
This feature allows for flexibility of system expansion because of the
extra chassis space available. Features of the 11/04 include:

e Self-test diagnostic routines which are automatically executed every
time the processor is powered up, the console emulator routine is
initiated, or the bootstrap routine is initiated.

e Operator front panel with built-in CPU console emulator that allows
control from any ASCII terminal without the need for the conventional
front panel with display lights and switches.

e Automatic bootstrap loader which allows system restart from a varie-
ty of peripheral devices without manual switch toggling or key-pad
operations.

eChoice of core-or MOS memory, with parity memory optional, ex-
pandable from a minimum of 8K bytes of memory to as much as 56K
bytes.

e Choice of 5%4-inch or 10%2-inch high mounting chassis.

MEMORY

The PDP-11/04 is available with MOS, core memory, or a mixture of
the two. MOS (metalic oxide semiconductor) memory uses industry
standard 4K random access memory chips with cycle time of 700
nanoseconds. MOS packaging provides up to 16K words on a single
circuit board, which can be located in any available backplane siot.
Optional battery backup is available to maintain MOS memory con-
tents during a power failure.

Memory

Min size: 4K words
Max size: 28K words
Type: MOS, core
Access time: 500 nsec, typ
Cycle time: 725 nsec, typ

129

PDP11/04, PDP-11/34

CONSOLE .

The CPU console emulator feature permits control of the PDP-11/04
from any ASCII terminal connected to the processor. Console emula-
tor operations include the normal memory LOAD, EXAMINE, and
DEPOSIT, in addition to START or BOOT. This ROM-resident virtual
console routine emulates all the functions of a normal programmers’
console and provides at the keyboard the equivalent capability of any
serial ASCII terminal connected to the system.

The operational programmers’ console is a useful aid for program
development. The 11/04 includes a maintenance feature which aids in
system error diagnostics. When in maintenance mode, the program-
mers’ console enables the CPU’s microcode to be single stepped and
the UNIBUS addresses and data to be displayed or printed. Detailed
information about the operators’ and programmers’ consoles is pre-
sented in the section of this chapter which discusses the PDP-11/34.

Usual Mechanical Conditions

These requirements may vary or be altered according to site condi-
tions; a DIGITAL salesperson can offer appropriate information about
any specific situation.

1 CENTRAL PROCESSOR
2 8K MEMORY

3 BOOTSTRAP*

4

5

6 EXPANSION SLOTS
7

8

9 | TERMINATOR

* BOOTSTRAP MODULE ALSO CONTAINS
THE SELF-TEST FEATURE AND FRONT-
PANEL EMULATOR ROM PROGRAMS.

Figure 6-1 PDP-11/04 Backplane

PDP-11/34

The PDP-11/34 is a mid-range member of the PDP-11 family of pro-

cessors. Features include:

e|ntegral memory management hardware that provides program pro-
tection, memory relocation, and addressing of up to 124K 16-bit
words

130

PDP11/04, PDP-11/34

eIntegral extended instruction set (EIS) that provides hardware fixed-
point arithmetic in double-precision mode (32-bit operands).

e Self-test diagnostic routines which are automatically executed every
time the processor is powered up, the console emulator routlne is
initiated, or the bootstrap routine is initiated.

e Operator front panel with built-in CPU console emulator that allows
control from any ASCII terminal without the need for the conventional
front panel with display lights and switches.

e Automatic bootstrap loader which allows system restart from a
variety of peripherals devices without manual switch toggling or key-
pad operations.

e Choice of 5v4-inch or 10'2-inch high mounting chassis.

MEMORY

The PDP-11/34 is available with MOS memory, core memory, a mix-
ture of the two, or cache. MOS (metallic oxide semiconductor) memo-
ry uses industry standard 4K random access memory chips with a
cycle time of 725 nanoseconds. MOS packaging provides up to 16K
words on a single circuit board.

Optional battery backup is available to maintain MOS memory con-
tents during a power failure.

8K or 16K words of core memory are provided on a single board,
which mounts in one slot and overhangs the adjacent slot.

Parity memory, MOS or core, is standard on all PDP-11/34s, as is
memory management and protection. This hardware feature is de-
signed for systems where the memory size is greater than 28K words
and for multi-programming systems where protection and relocation
facilities are necessary.

Memory

Max size: 124K words
Type: core or MOS
Parity: standard

Cache Memory

The cache memory option utilizes a 2K byte direct mapping approach
with an expected “hit” ratio of 86%. Detailed informatiorn on cache is
presented in Chapter 8.

MOS

The basic unit of MOS memory, MS11-JP, contains 16K words of
parity MOS memory. Each 16K words of MOS requires 1 hex mount-
ing space.

131

PDP11/04, PDP-11/34

Core)

The basic unit of core memory, MM11-DP, contains 16K words of
parity core memory. Each 16K words of core memory requires 2 hex
mounting spaces.

Parity

All main memory in a PDP-11/34 system contains parity to enhance
system integrity. Parity is generated and checked on all references
between the CPU and memory, and any parity errors are flagged for
resolution under program control. Odd parity is used, with one parity
bit per 8-bit byte, for a total of 18 bits per word.

A double height module, M7850, contains parity control logic. lts
control and status register (CSR) address is selectable between 772
100 and 772 136.

The CSR captures the high order address bits of a memory location
with a parity error.

Battery Backup

Core memory is non-volatile; the contents are preserved when power
is removed. However, MOS memory is volatile. If power is interrupted,
an auxiliary power supply must be provided if information in the mem-
ory is to be saved. With the 52" and 10'2" CPU assemblies there is an
optional battery backup unit that can preserve the contents of 32K
words of MOS memory for about 2 hours. This auxiliary power unitis a
battery that is charged up by the main AC power when the computer
system is operating normally. In this normal mode, the battery backup
has no effect on the MOS memory. But if power is interrupted, voltage-
sensing circuitry within the backup option will automatically cause the
MOS to be powered from this auxiliary power. The MOS information
will be retained by being refreshed at a low cycle rate, using minimum
power.

M9301 MODULE
The M9301 module, which is included with the PDP-11/34, provides
four functions.

e |t contains a read-only memory (ROM) that holds diagnostic routines
for verifying computer operation.

elt contains, also in ROM, the several bootstrap loader programs for
starting up the system.

eIt contains the console emulator routine in ROM for issuing console
commands from the terminal.

|t provides termination resistors for the UNIBUS.
132

PDP11/04, PDP-11/34

There are two versions of the M9301 module available:

M9301-YA M9301-YB
Main user OEM End User
Able to run secon- yes* . no
dary bootstrap pro-
gram directly upon
power up or reboot
Automatic entry to yes* . yes
console emulator
routine
Needs an ASCll ter- no yes
minal

* Selection of one of these two operations is made by setting of switches con-
tained on the module.

Diagnostics

Both versions of the M9301 contain diagnostics to check both the
processor and memory in a Go/No-Go mode. Execution of the diag-
nostics occurs automatically but may be disabled by switches on the
M9301.

Bootstrap Loader

The M9301-YA contains independent bootstrap programs that can
bootstrap programs into memory from a selected peripheral device.
Through front panel control or following power-up, the computer can
execute a bootstrap directly, without the operator’s keying in the initial
program manually. The bootstrap program for the peripheral device is
determined by switches on the M9301 board. This is especially useful
in remote applications where no operator is present.

After execution of the CPU diagnostics, the M9301-YB turns control of
the system over to the user at the console terminal. The system prints
out status information and is ready to accept simple user commands
for checking or modifying information within the computer, starting a
program already in memory, or executing a device bootstrap.

The inclusion of a bootstrap loader in non-destructible read-only
memory is a tremendous convenience in system operation. Bootstrap
programs do not have to be loaded manually into the computer for
system initialization.

133

PDP11/04, PDP-11/34

Console Emulation

The normal console functions traditionally performed through front
panel switches can be obtained by typing simple commands on the
console terminal. LOAD, EXAMINE, DEPOSIT, START, and BOOT
functions are available.

The M9301 module contains a console emulator routine. When this
routine is used in conjunction with the terminal, functions quite similar
to those found on the programmers’ console of traditional PDP-11
family computers are generated.

Summary of the Console Emulator Functions

LOAD Loads the address to be manipulated into the sys-
tem.
EXAMINE Allows the operator to examine the contents of the

address that was loaded and/or deposited.

DEPOSIT Allows the operator to write into the address that was
loaded and/or examined.

START Initializes the system and starts execution of the pro-
gram at the address loaded.

BOOT Allows the booting of a device specified by a 2-char-
~acter code and optional unit number.

Console Emulator Operation

The console emulator allows the user to perform LOAD, EXAMINE,
DEPOSIT, START, and BOOT functions by typing in the appropriate
code on the keyboard.

Entry Into the Console Emulator
There are four ways of entering the console emulator:

emove the power switch to the ON position

edepress the BOOT switch

eautomatic entry on return from a power failure

®|oad address manually

After the console emulator routine has started and the basic CPL}
diagnostics have all run successfully, a series of numbers represent-

ing the contents of RO, R4, SP, and PC will be printed by the terminal.
This sequence will be follwed by a $ on the next line.

134

PDP11/04, PDP-11/34

Example — a typical printout on power up:

XXXXXX XXXXXX XXXXXX XXXXXX
$
RO R4 R6 PC
STACK PROGRAM
PROMPT POINTER COUNTER
CHARACTER (SP) .

NOTE: X Signifies an octal numeral (0-7).

Whenever there is a power-up routine, or the BOOT
switch is released from the INIT position, the PC at
the time will be stored. The stored value is printed
out as above (noted as the PC).

Detailed instructions about using the console emulator can be found in.

.user instruction documents, the 11/34 Users’ Guide and the associat-

ed hardware manuals.

Termination
The M9301 contains resistors for proper impedance termination at the
end of the UNIBUS.

OPERATOR’S CONSOLE

The operator’s console is the front panel link between the user and the
computer. It contains a minimum number of switches and lights. All
normally used console functions are available through the
combination of the operator’s console and an ASCII terminal, such as
an LA36 DECwriter.

POWER OFF DC power to the
computer is off.
ON Power is applied to

the computer (and
the system).

STNBY Standby; no DC
power to the com-
puter, but DC power
is applied to MOS
memory (to retain
data). The fans re-
main on.

CONT/HALT CONT The program is al-
lowed to continue.

135

PDP11/04, PDP-11/34

HALT

BOOT/INIT INIT

HALT

CONT

The program is
stopped.

The switch s
spring-returned to
the BOOT position.
When the switch is
depressed to INI-
Tialize and then re-
turn to BOOT, the
operation depends
on the setting of the
CONT/HALT switch.

Only the processor
is initialized and no
“UNIBUS INIT” is
generated. Upon
lifting the
CONT/HALT switch,
the M9301 routine is
executed allowing
examination of sys-
tem peripherals
without clearing
their contents with
“UNIBUS INIT.”

Initialize and then
execute the M9301
program.

When the BOOT switch is released, the following action takes place:
A. For both M9301-YA and M9301-YB (when the switches are set for

this operation):

1. Run basic CPU diagnostics.

2. Print out (on the console terminal) contents of RO, R4, SP, and PC
at the time of power up, following by a dollar sign ($) on the next

line.

3. Enter console emulator routine, awaiting keyboard commands.

4. When a device bootstrap command is issued, first run processor

memory diagnostics, then execute secondary bootstrap program

from the designated peripheral device.

136

| -

PDP11/04, PDP-11/34

B. For the M9301-YA (OEM) version only (when M9301-YA switches
are set for this operation):

1. Run basic CPU diagnostics.

2. Run memory diagnostics.

3. Run secondary bootstrap program from the preselected peripheral
device.

NOTE: When utilizing the stand-alone switch set-
ting described as alternative b, above, the switches
must be reset to enable execution of the console
emulator routine.

PDP-11/34 PROCESSOR BACKPLANE CONFIGURATION

CPU

M9301 QUAD SPC

M7850 QUAD SPC

HEX SPC

HEX SPC

HEX SPC

HEX SPC

® N o U0 » w

M9302 QUAD SPC
A B C D E F

~0

Figure 6-2 Processor Backplane

The processor backplane consists of a double system unit (SU)
comprising 9 hex slots. All PDP-11/34 systems contain the CPU,
M9301 Bootstrap/Terminator, M7850 parity control, and M9302 (or a
UNIBUS jumper to the next SU) as shown in Figure 6-2. Memory is
added as follows depending on whether the system uses core or MOS.

Core Memory:
Core memory is available in two size increments, 8K and 16K words.

The 8K core, MM11-C, consists of a hex and a quad module as fol-
lows: .

HEX CONTROLLER
QUAD STACK

137

PDP11/04, PDP-11/34

The 16K core, designed MM11-D, consists of 2 hex modules as fol-
lows:

HEX CONTROLLER

HEX STACK

MOS Memory:
MOS memory is available in 8K or 16K increments and all increments

consist of a single hex module.
8K and 16K increments are MS11-F and MS11-J.

The following backplane configurations constitute the basic PDP-
11/34 computer.

1
cPU

2

3 M9301 QUAD SPC

4 M7850 QUAD SPC

5
MM11-D

6

7) HEX SPC

8 HEX SPC

9 M9302 QUAD SPC

A B C D E F

Figure 6-3 16K Core using MM11-D

Additional memory or quad and hex SPC options (DL11-W, TA11 con-
troller, RX11 controller, etc.) may be added to the processor back-
plane as space allows. :

MEMORY MANAGEMENT ON THE PDP-11/34

Memory Management and User Protection

The PDP-11/34’s integral memory management facility allows a 16-bit
machine to provide 18-bit capability for a four-fold extension of ad-
dressable memory. Access to memory is in as many as 32K units
through eight programmable registers. These registers assign (or
map) the virtual addresses, in 4K-word pages, to 4K-word physical

138

i

PDP11/04, PDP-11/34

1
CPU

2

3 M9301 QUAD SPC
4 M7850 QUAD SPC

MS11-FOR J

6 HEX SPC

7 HEX SPC

8 HEX SPC

9 M9302 QUAD SPC

A B C D E F

Figure 6-4 16K MOS using MS11-RorJ

addresses anywhere within physical memory. The starting address of
each 4K-word physical segment is stored in the registers.

Only virtual addresses need to be provided; transformation to physical
addresses takes place automatically and transparently.

Programming

The memory management hardware has been optimized for a multi-
programming environment. The processor can operate in two modes,
kernel and user.

When in kernel mode, the program has complete control and can
execute all instructions. Monitors and supervisory programs are exe-
cuted in this mode.

When in user mode, the program is prevented from executing certain
instructions that could:

e cause the modification of the kernel program

e halt the computer

euse memory space assigned to the kernel or to other users

In a multi-programming environment several user programs would be

resident in memory at any given time. The task of the supervisory
program would be to:

e Control the execution of the various user programs.

e Allocate memory and peripheral device resources.

eSafeguard the integrity of the system as a whole by careful control of
each user program.

139

PDP11/04, PDP-11/34

In a multi-programming system, the management unit assigns pages

_(relocatable memory segments) to your program and prevents you
from making any unauthorized access to those pages outside your
assigned area. Thus, you can effectively be prevented from accidental
or willful destruction of any other user program or of the system exe-
cutive program.

Hardware-implemented features enable the operating system to dy-
namically allocate memory upon demand, while a program is being
run.

Basic Addressing

18-bit direct byte addresses are generated by PDP-11/34 and larger
family members. Although the PDP-11 family word length is 16 bits,
the UNIBUS and CPU addressing logic is actually 18 bits. Thus, while
the PDP-11 word can contain address references only up to 32K
words (64K bytes) the CPU and UNIBUS can reference addresses up
to 128K words (256K bytes). These extra two bits of addressing logic
provide the basic framework for expanding memory references.

In addition to the word length constraint on basic memory addressing
space, the uppermost 4K words of address space are always reserved
for UNIBUS 1/0 device registers. In a basic PDP-11 memory configu-
ration (without management), all address references to the uppermost
4K words of 16-bit address space (160000-177777) are converted to
full 18-bit references with bits 17 and 16 always set to 1. Thus, a 16-bit
reference to the I/0 device register at address 173224 is automatically
converted internally to a full 18-bit reference to the register at address
773223. The basic PDP-11 configuration can then directly address up
to 28K words of true memory and 4K words of UNIBUS I/0 device
registers, and, with memory-managed systems, 128K words.

Active Page Registers

The memory management unit uses two sets of eight 32-bit Active
Page Registers (APR). An APR is actually a pair of 16-bit registers: a
Page Address Register (PAR) and a Page Descriptor Register (PDR).
These registers are always used as a pair and contain all the informa-
tion needed to describe and relocate the currently active memory
pages.

One set of APRs is used in kernel mode, and the other in user mode.
The set to be used is determined by the current CPU mode contained
in the processor status word.

140

.

PDP11/04, PDP-11/34

15 413 m [
[l l PROCESSOR STATUS WORD 1
1 A 1 1 1
1 l
! !
KERNEL (00) USER (11)
APR O APR 0
APR 1 APR |
APR 2 APR 2 ACTIVE
PAGE
APR 3 APR 3) REGISTERS
APR 4 APR 4
APR 5 APR S
APR 6 APR 6
APR7 APR 7
15 0 I 0
PAR |— _— —I POR J
PAGE ADDRESS REGISTER PAGE DESCRIPTION REGISTER

Figure 6-5 Active Page Registers

Capabilities Provided by Memory Management

Memory Size (words): 124K, max (plus 4K for 1/0 &
registers)

Address Space: Virtual (16 bits)
Physical (18 bits)

Modes of Operation: Kernel & User

Stack Pointers: 2 (one for each mode)

Memory Relocation:

Number of Pages: 16 (8 for each mode)
Page Length: 3210 4,096 words
Memory Protection: no access
read only
read/write

Virtual Addressing

When the memory management unit is operating, the normal 16-bit
direct byte address is no longer interpreted as a direct physical ad-
dress (PA) but as a virtual address (VA) containing information to be
used in constructing a new 18-bit physical address. The information

141

PDP11/04, PDP-11/34

contained in the virtual address is combined with relocation and de-
scription information contained in the active page register to yield an
18-bit physical address.

Because addresses are relocated automatically, the computer may be
considered to be operating in virtual address space. This means that
no matter where a program is loaded into physical memory, it will not
have to be re-linked; it always appears to be at the same virtual loca-
tion in memory.

The virtual address space is divided into eight 4K-word pages. Each
page is relocated separately. This is a useful feature in multi-pro-
gammmed timesharing systems. It permits a new large program to be
loaded into discontinuous blocks of physical memory.

A basic function is to perform memory relocation and provide extend-
ed memory addressing capability for systems with more than 28K of
physical memory. Two sets of page address registers are used to
relocate virtual addresses to physical addresses in memory. These
sets are used as hardware relocation registers that permit several
users’ programs, each starting at virtual address 0, to reside
simultaneously in physical memory.

Program Relocation

The page address registers are used to determine the starting physi-
cal address of each relocated program in physical memory. Figure 6-6
shows a simplified example of the relocation concept.

Program A starting address 0 is relocated by a constant to provide
physical address 6400,.

If the next program virtual address is 2, the relocation constant will
then cause physical address 6402,, which is the second item of Pro-
gram A, to be accessed. When Program B is running, the relocation
constant is changed to 100000,. Then Program B virtual addresses
starting at 0 are relocated to access physical addresses starting at
100000;. Using the active page address registers to provide relocation
eliminates the need to re-link a program each time it is loaded into a
different physical memory location. The program always appears to
start at the same address.

A program is relocated in pages consisting of from 1 to 128 blocks.
Each block is 32 words in length. Thus, the maximum length of a page
is 4096 (128 X 32) words. Using all of the eight available active page
registers in a set, a maximum program length of 32,768 words can be
accommodated. Each of the eight pages can be relocated anywhere in
the physical memory, as long as each relocated page begins on a

142

T

PDP11/04, PDP-11/34

RELOCATION
VIRTUAL
ADDRESS CONSTANT

! A = 6400
(vA) = 0 8 = 100000
PHYSICAL MEMORY]

PROGRAM B

100000

l PHYSICAL ADDRESS PROGRAM A
006400

L—_/—/'/

000000

Figure 6-6 Simplified Memory Relocation

boundary that is a multiple of 32 words. However, for pages that are
smaller then 4K words, only the memory actually allocated to the page
may be accessed.

The relocation example shown in Figure 6-7 illustrates several points
about memory relocation.

a) Although the program appears to the processor to be in contiguous
address space, the 32K-word physical address space is actually
scattered through several separate areas of physical memory. As
long as the total available physical memory space is adequate, a
program can be loaded.

b) Pages may be relocated to higher or lower physical addresses with
respect to their virtual address ranges. In the example in Figure 6-7,
page 1 is relocated to a higher range of physical addresses, page 4
is relocated to a lower range, and page 3 is not relocated at all
(even though its relocation constant is non-zero).

c) All of the pages shown in the example start on 32-word boundaries.

d) Each page is relocated independently. There is no reason why two
or more pages could not be relocated to the same physical memory
space. Using more than one page address register in the set to
access the same space would be one way of providing different
memory access rights to the same data, depending upon which
part of the program was referencing that data.

143

PDP11/04, PDP-11/34

Memory Units

Block: 32 words

Page: 1to 128 blocks (32 to 4,096 words)

No. of pages: 8 per mode

Size of relocatable

memory 32,768 words, max (8 X 4,096)

VIRTUAL ADDRESS PAGE| RELOCATION PHYSICAL MEMORY
RANGES NO. CONSTANT SPACE

160000-177776 7 150000 340000- 357776
140000- 157776 6 000000 330000- 347776
120000-137776 5 100000 310000- 327776
100000- 117776 4 020000 220000- 237776
060000-077776 3 060000 140000 - 157776
040000- 057776 2 250000 7 \ 120000- 137776
020000-037776 1 320000 040000- 057776
000000-017776 0 400000

Figure 6-7 Relocation of a 32K-Word Program into 124K-Word Physi-
cal Memory

Protection

A timesharing system performs multiprogramming; it allows several

programs to reside in memory simultaneously and to operate sequen-

tially. Access to these programs, and the memory space they occupy,

must be strictly defined and controlled. A timesharing system requires

several types of memory protection. For example:

eUser programs must not be allowed to expand beyond allocated
space, unless authorized by the system.

e Users must be prevented from modifying common subroutines and
algorithms that are resident for all users.

eUsers must be prevented from gaining control of or modifying the
operating system software.

eUsers must be prevented from accessing or modifying memory oc-
cupied by other users.

The PDP-11 memory management option provides the hardware
facilities to implement all of the above types of memory protection.

144

T

N

PDP11/04, PDP-11/34

Inaccessible Memory

Each page has a 2-bit access control key associated with it. The key is
assigned under program control. When the key is set to 0, the page is
defined as non-resident. Any attempt by a user program to access a
non-resident page is prevented by an immediate abort. Using this
feature to provide memory protection, only those pages associated
with the current program are set to legal access keys. The access
control keys of all other program pages are set to 0, which prevents
illegal memory references.

Read-Only Memory

The access control key for a page can be set to 2, which allows read
(fetch) memory references to the page, but immediately aborts any
attempt to write into that page. This read-only type of memory protec-
tion can be afforded to pages that contain common data, subroutines,
or shared algorithms. This type of memory protection allows the ac-
cess rights to a given information module to be user-dependent. That
is, the access right to a given information module may be varied for
different users by altering the access control key.

A page address register in each of the sets (kernel and user modes)
may be set up to reference the same physical page in memory and
each may be keyed for different access rights. For example, the user
access control key might be 2 (read-only access), and the kernel ac-
cess control key might be 4 (allowing complete read/write access).

Multiple Address Space

There are two complete PAR/PDR sets provided, one set for kernel
mode and one set for user mode. This affords the timesharing system
another type of memory protection. The mode of operation is speci-
fied by the processor status word current mode field, or previous
mode field, as determined by the current instruction.

Assuming the current mode PS bits are valid, the active page register
sets are enabled as follows:

PS(bits 15,14) PAR/PDR Set Enabled
00 Kernel mode
01 lilegal (all references aborted on access
10
11 User mode
145

PDP11/04, PDP-11/34

Thus, a user mode program is relocated by its own PAR/PDR set, as
are kernel programs. This makes it impossible for a program running
in one mode to reference space allocated to another mode accidental-
ly when the active page registers are set correctly. For example, a user
cannot transfer to kernel space. The kernel mode address space may
be reserved for resident system monitor functions, such as the basic
Input/Output control routines, memory management trap handlers,
and timesharing scheduling modules. By dividing the types of
timesharing system programs functionally between the kernel and
user modes, a minimum of space control housekeeping is required as
the timeshared operating system sequences from one user program
to the next. For example, only the user PAR/PDR set needs to be
updated as each new user program is serviced. The two PAR/PDR
sets implemented in the memory management unit are shown in Fig-
ure 6-8 and Figure 6-9.

Table 6-1 PAR/PDR Address Assignments

Kernel Active Page Registers User Active Page Registers
No. PAR PDR No. PAR PDR

0 772340 772300 0 777640 777600

1 772342 772302 1 777642 777602

2 772344 772304 2 777644 777604

3 772346 772306 3 777646 777606

4 772350 772310 4 777650 777610

5 772352 772312 5 777652 777612

6 772354 772314 6 777654 777614

7 772356 772316 7 777656 777616

Page Address Register (PAR)

The page address register (PAR), shown in Figure 6-8, contains the
12-bit page address field (PAF) that specified the base address of the
page.

15 12 1A} 0

V.7 . par .

Figure 6-8 Page Address Register

Bits 15-12 are unused and reserved for possible future use.

146

e

PDP11/04, PDP-11/34

The page address register may be thought of alternatively as a reloca-
tion constant, or a base register containing a base address. Either
interpretation indicates the basic function of the page address register
(PAR) in the relocation scheme.

Page Descriptor Register (PDR)

The Page Descriptor Register (PDR), shown in Figure 6-9, contains
information relative to page expansion, page length, and access con-
trol.

1514 8 7 6 5 4 3 2 1 0
@ 7R /EER
P B

Figure 6-9 Page Descriptor Register

Access Control Field (ACF)

This 2-bit field, bits 2 and 1, of the PDR describes the access rights to
this particular page. The access codes or keys specify the manner in
which a page may be accessed and whether or not a given access
should result in an abort of the current operation. A memory reference
that causes an abort is not completed and is terminated immediately.

Aborts are caused by attempts to access non-resident pages, by page.
length errors, or by access violations, such as attempting to write into
a read-only page. Traps are used as an aid in gathering memory
management information.

In the context of access control, the term “write” is used to indicate the
action of any instruction which modifies the contents of any address-
able word. A write is synonymous with what is usually called a store or
modify in many computer systems. Table 6-2 lists the ACF keys and
their functions. The ACF is written into the PDR under program con-
trol.

147

PDP11/04, PDP-11/34

Table 6-2 Access Control Field Keys

AFC Key Description Function

00 0 Non-resident Abort any
attempt to ac-

cess this non-re-

sident page
01 2 Resident Abort any at-
read-only tempt to write in-
to this page.
10 4 (unused) Abort all
Accesses.
11 6 Resident Read or Write al-
read/write lowed. No trap or
abort occurs.

Expansion Direction (ED)

The ED bit located in PDR bit position 3 indicates the authorized direc-
tion in which the page can expand. A logic 0 in the bit (ED = 0)
indicates the page can expand upward from relative zero. A logic 1 in
this bit (ED = 1) indicates the page can expand downward toward
relative zero. The ED bit is written into the PDR under program control.
When the expansion direction is upward (ED = 0), the page length is
increased by adding blocks with higher relative addresses. Upward
expansion is usually specified for program or data pages to add more
program or table space. An example of page expansion upward is
shown in Figure 6-10.

When the expansion direction is downward (ED = 1), the page length
is increased by adding blocks with lower relative addresses. Down-
ward expansion is specified for stack pages so that more stack space
can be added. An example of page expansion downward is shown in
Figure 6-11.

148

PDP11/04, PDP-11/34

PD

000 0O

‘li 0101001 0000 O \IOI

PAF=0170 —‘

PLF =51g =41)0=NUMBER OF BLOCKS

1

—

|

ED =0 =UPWARD EXPANSION

ACF = 6 = READ / WRITE

NOTE: To specify a block length of 42 for an up-
ward expandable page, write highestauthorized
block number directly into high byte of PDR. Bit 15 is
not used because the highest allowable block num-

beris 177,.

B(OCK 177, 7
//
“8LOCK 1765
ADDRESS RANGE '
OF POTENTIAL PAGE
EXPANSION BY
CHANGING THE PLF
70
BLOCK 52,
024176
BLOCK 515
024100
AUTHORIZE PAGE 017276
LENGTH = 42,0 BLOCKS BLOCK 2
OR 0 THRU 515+ 017200
525 BLOCKS
017176
BLOCK 1
017100
017076
BLOCK 0
017000

ANY BLOCK NUMBER
GREATER THAN 4115(515)
(VA<12:06> 51g)
WILL CAUSE A PAGE
LENGTH ABORT.

~«———BASE ADDRESS OF PAGE

Figure 6-10 Example of an Upward Expandable Page

Written Into (W)
The W bit located in PDR bit position 6 indicates whether the page has
been written into since it was loaded into memory. W = 1 is affirmative.
The W bit is automatically cleared when the PAR or PDR of that page is
written into. It can be set only by the control logic.

149

PDP11/04, PDP-11/34

In disk swapping and memory overlay applications, the W bit (bit 6)
can be used to determine which pages in memory have been modified
by a user. Those that have been written into must be saved in their
current form. Those that have not been written into (W = 0), need not
be saved and can be overlayed with new pages, if necessary.

Page Length Field (PLF)

The 7-bit PLF located in PDR (bits 14-8) specifies the authorized
length of the page, in 32-word blocks. The PLF holds block numbers
from 0 to 177, thus allowing any page length from 1 to 128,, blocks.
The PLF is written in the PDR under program control.

PLF for an Upward Expandable Page

When the page expands upward, the PLF must be set to one less than
the intended number of blocks authorized for that page. For example,
if 524 (42,,) blocks are authorized, the PLF is set to 514 (41,,) (Figure 6-
9). The hardware compares the virtual address block number, VA (bits
12-6) with the PLF to determine if the virtual address is within the
authorized page length.

When the virtual address block number is less than or equal to the
PLF, the virtual address is within the authorized page length. If the
virtual address is greater than the PLF, a page length fault (address
too high) is detected by the hardware and an abort occurs. In this
case, the virtual address space legal to the program is non-contiguous
because the three most significant bits of the virtual address are used
to select the PAR/PDR set.

PLF for a Downward Expandable Page

The capability of providing downward expansion for a page is intend-
ed specifically for those pages that are to be used as stacks. In the
PDP-11, a stack starts at the highest location reserved for it and ex-
pands downward toward the lowest address as items are added to the
stack.

When the page is to be downward expandable, the PLF must be set to
authorize a page length, in blocks, that starts at the highest address of
the page. That is always Block 177,. Refer to Figure 6-11, which shows
an example of a downward expandable page. A page length of 42,,
blocks is arbitrarily chosen so that the example can be compared with
the upward expandable example shown in Figure 6-10.

NOTE: The same PAF is used in both examples.
This is done to emphasize that the PAF, as the base
address, always determines the lowest address of
the page, whether it is upward or downward expand-
able.

150

1

PDP11/04, PDP-11/34
To specify page length for a downward expandable page, write com-
plement of blocks required into high byte of PDR.

In this example, a 42-block page is required.
PLF is derived as follows:

42,, = 524; 2's complement = 126,

036776
BLOCK 177y

036700

. 036676
- BLOCK 1764

036600

AUTHORIZED PAGI 036576
LENGTH = 42y BLOCKS BLOCK175g

%

0311676

BLOCK 1265
311600

BUGCK 1255
%

s
e

A BLOCK NUMBER
. REFERENCE LESS

ADDRESS RANGE WAL THAN 126g

oF POTENTIAL PAGE : i (VA<12:06> LESS THAN1265)

EXPANSION BY -

CHANGING THE PLF G UaE Ser ot
7017176 :

s?x/' 7 (s

017100

o 1797e ”
7 BLO e
////// //o 17000 -/

BASE ADDRESS OF PAGE

Figure 6-11 Example of a Downward Expandable Page

The calculations for complementing the number of blocks required to
obtain the PLF is as follows:

MAXIMUM REQUIRED
BLOCK NO. MINUS LENGTH EQUALS PLF
177, - 52 = 1254
1274, - 42,, = 85,,
151

PDP11/04, PDP-11/34

Virtual & Physical Addresses

The memory management unit is located between the central proces-
sor unit and the UNIBUS address lines. When memory management is
enabled, the processor ceases to supply physical address information
to the UNIBUS. Instead, virtual addresses are sent to the memory
management unit where they are relocated by various constants com-
puted within the memory management unit.

Construction of a Physical Address

The basic information needed for the construction of a Physical Ad-
dress (PA) comes from the Virtual Address (VA), which is illustrated in
Figure 6-12, and the appropriate APR set.

I APF I OF
1 I 4

"
ACTIVE PAGE FIELD DISPLACEMENT FIELD

Figure 6-12 Interpretation of a Virtual Address

The virtual address consists of:

1. The Active Page Field (APF). This 3-bit field determines which of
eight active page registers (APR0O-APR7) will be used to form the
physical address (PA).

2. The Displacement Field (DF). This 13-bit field contains an address
relative to the beginning of a page. This permits page lengths up to
4K words (2'® = 8K bytes). The DF is further subdivided into two
fields as shown in Figure 6-13.

12 [S 0

T
BN DIB

" L
BLOCK NUMBER DISPI ACEMENT IN BLOCKS

Figure 6-13 Displacement Field of Virtual Address

The displacement field (DF) consists of:
1. The Block Number (BN). This 7-bit field is interpreted as the block
number within the current page.

2. The Displacement in Block (DIB). This 16-bit field contains the dis-
placement within the block referred to by the block number.

The remainder of the information needed to construct the physical
address comes from the 12-bit Page Address Field (PAF) (part of the

152

|-

PDP11/04, PDP-11/34

active page register) and specifies the starting address of the memory
which that APR describes. The PAF is actually a block number in the
physical memory, e.g. PAF = 3 indicates a starting address of 96 (3 X
32 = 96) in physical memory.

The formation of the physical address is illustrated in Figure 6-14.

15 3 12] S Q

VIRTUAL
r IAPF I BLOC’: NO. I o018 ADDRESS

15 21 0

ACTIVE PAGE
[. 1 . PAGE ADDRESS FIELD I REGISTER

L@

4 6 5 [J

______ PHYSICAL
' | PHYSICAL BLOCK NO. X]~ -L ois —I ADDRESS

(DISPLACEMEJY IN BLOCKS)
Figure 6-14 Construction of a Physical Address

The logical sequence involved in constructing a physical address is as
follows:
1. Select a set of active page registers depending on current mode.

2. The active page field of the virtual address is used to select an
active page register (APR0O-APR?7). »

3. The page address field of the selected active page register contains
the starting address of the currently active page as a block number
in physical memory.

4. The block number from the virtual address is added to the block
number from the page address field to yield the number of the
block in physical memory which will contain the physical address
being constructed.

5. The displacement in block from the displacement field of the virtual
address is joined to the physical block number to yield a true 18-bit
physical address.

Determining the Program Physical Address

A 16-bit virtual address can specify up to 32K words, in the range from
Q to 1777764 (word boundaries are even numbers). The three most
significant virtual address bits designate the PAR/PDR pair to be
referenced during page address relocation. Table 6-3 lists the virtual
address ranges that specify each of the PAR/PDR sets.

163

PDP11/04, PDP-11/34

Table 6-3 Relating Virtual Address to PAR/PDR Set

Virtual Address Range PAR/PDR Set

000000-17776
020000-37776
040000-57776
060000-77776
100000-117776
120000-137776
140000-157775
160000-177776

NOoO O, WD =2 O

NOTE Any use of page lengths less than 4K words
causes holes to be left in the virtual address space.

Status Registers

Aborts generated by protection hardware are vectored through kernel
virtual location 250. Status registers 0 and 2 are used to determine
why the abort occured. Note that an abort to a location which is itself
an invalid address will cause another abort. Thus the kernel program
must insure that kernel virtual address 250 is mapped into a valid
adddress, otherwise a loop will occur which will require console inter-
vention.

Status Register 0 (SR0)

SRO contains abort error flags, memory management enable, plus
other essential information required by an operating system to recover
from an abort or service a memory management trap. The SRO format
is shown in Figure 6-15. lts address is 777 572.

1 0

| |

15 4 13 12

3
CTTT 7717 A
— e
ABORT-NON-RESIDENT —-J
ABORT-PAGE LENGTH ERROR
ABORT-READ ONLY [

MAINTENANCE MODE
MO

PAGE NUMBER
ENABLE MANAGEMENT

Figure 6-15 Format of Staus Register 0 (SR0)

Bits 15-13 are the abort flags. They may be considered to be in priority
order in that flags to the right are less significant and should be ig-

154

PDP11/04, PDP-11/34

nored. For example, a non-resident abort service routine would ignore
page length and access control flags. A page length abort service
routine would ignore an access control fault.

NOTE Bit 15, 14, or 13, when set (abort conditions)
cause the logic to freeze the contents of SRO bits 1 to
6 and status register SR2. This is done to facilitate
recovery from the abort.

Protection is enabled when an address is relocated. This implies that
either SRO, bit 0 is equal to 1 (memory management enabled) or that
SRO, bit 8, is equal to 1 and the memory reference is the final one of a
destination calculation (maintenance/destination mode).

Note that SRO bits 0 and 8 can be set under program control to provide
meaningful memory management control information. However, infor-
. mation written into all other bits is not meaningful. Only that informa-
tion which is automatically written into these remaining bits as a result
of hardware actions is useful as a monitor of the status of the memory
management unit. Setting bits 15-13 under program control will not
cause traps to occur. These bits, however, must be reset to 0 after an
abort or trap has occurred in order to resume monitoring memory
management.

Abort Nonresident

Bit 15 is the abort nonresident bit. It is set by attempting to access a
page with an access control field (ACF) key equal to 0 or 4 or by
enabling relocation with an illegal mode in the PS.

Abort Page Length

Bit 14 is the abort page-length bit. It is set by attempting to access a
location in a page with a block number (virtual address bits 12-6) that
is outside the area authorized by the page length field (PFL) of the
PDR for that page.

Abort Read Only
Bit 13 is the abort read-only bit. It is set by attempting to write in a
read-only page, access key 2.

NOTE There are no restrictions against abort bits’

being set simultaneously by the same access at-

tempt.

Maintenance/Destination Mode
Bit 8 specifies maintenance use of the memory management unit. Itis
used for diagnostic purposes. For the instructions used in the initial

155

PDP11/04, PDP-11/34

diagnostic program, bit 8 is set so that only the final destination
reference is relocated. It is useful to prove the capability of relocating
addresses.

Mode of Operation
Bit 5 and 6 indicate the CPU mode (user or kernel) associated with the
page causing the abort. (Kernel = 00, User = 11).

Page Number

Bits 3-1 contain the page number of reference. Pages, like blocks, are
numbered from 0 upwards. The page number bit is used by the error
recovery routine to identify the page being accessed if an abort oc-
curs.

Enable Relocation and Protection

Bit 0 is the enable bit. When it is set to 1, all addresses are relocated
and protected by the memory management unit. When bit 0 is set to 0,
the memory management unit is disabled and addresses are neither
relocated nor protected.

Status Register 2 (SR2))

SR2 is loaded with the 16-bit virtual address (VA) at the beginning of
each instruction fetch, but is not updated if the instruction fetch fails.
SR2 is read-only; a write attempt will not modify its contents. SR2 is
the Virtual Address Program Counter. Upon an abort, the result of SR0
bits’ 15, 14, or 13 being set will freeze SR2 until the SR0 abort flags are
cleared. The address of SR2is 777 576.

15 0

ADDRESS
16-BIT VIRTUAL ADDRESS I 777576

Figure 6-16 Format of Status Register 2 (SR2)

MEMORY MANAGEMENT INSTRUCTIONS

Memory management provides communication between two spaces,
as determined by the current and previous modes of the processor
status word (PS).

Mnemonic Instruction Op Code
MFPI move from previous instruction space 0065SS
MTPI move to previous instruction space 0066DD
MFPD move from previous data space 1065SS
MTPD move to previous data space . 1066DD

These instructions are directly compatible with the larger 11 compu-
ters.

156

PDP11/04, PDP-11/34

The PDP-11/45/55 memory management unit, the KT11-C, imple-
ments separate instruction and data address space. In the PDP-11/34
and 11/60, there is no differentiation between instruction and data
space. The two instructions MFPD and MTPD (Move to and from
previous data space) execute identically to MFPl and MTPI.

157

158

CHAPTER 7

PDP-11/45, PDP-11/55

The PDP-11/45 and the PDP-11/55 are mid-range, very high speed
computers. They are designed for fast program execution and appli-
cations involving FORTRAN-compiled tasks as well as scientific and
engineering calculations.

The PDP-11/45 is a core memory based processor, the PDP-11/55 is
a bipolar memory based machine.

PDP-11/45 FEATURES

The PDP-11/45 is designed for speed. The high speed CPU circuits
allow program execution speeds in excess of three million instructions
per second. Bipolar memory is available at a speed of 300 nano-
seconds. Core memory is available at a speed of 980 nanoseconds.
Both may be combined on a single system up to a total of 32K words
bipolar, and core up to 128K words total memory. High speed compu-
tations may be performed by an independent floating point processor,
standard in the 11/55, optional in the 11/45. It overlaps its operations
with that of the central processor and offers, for example, average
double precision multiply times of 5.43 microseconds, working with its
own set of 64-bit registers.

The PDP-11/45 provides solutions to multiple task applications where

the computer must solve many similar problems or run multiple pro-

grams concurrently, for example, the automation of industrial

processes, monitoring and controlling multiple operations in real-time

while simultaneously preparing and printing production reports for

management. Memory size may be as small as 16K bytes or as large

as 248K bytes to accommodate several programs in memory simulta-

neously.

PDP-11/45 features include:

ememory expandable to 248K bytes

e optional memory segmentation, protection, and relocation

eoptional FP11-C floating point processor with advanced features and
operation with 32-bit and 64-bit numbers

ereliable core memory

efast secondary bus between processor and solid-state bipolar mem-
ory which operates in parallel with the UNIBUS

ebootstrap
ereal-time clock -
159

PDP-11/45, PDP-11/55

PDP-11/55 FEATURES

The PDP-11/55 is a bipolar memory based computer designed for
greater processor and system performance through the use of a dedi-
cated internal semiconductor memory bus. This high speed bus al-
lows the PDP-11/55 to fetch and execute instructions at 300 nano-
seconds. Two separate semiconductor controllers allow simultaneous
data transfers for increased system throughput (i.e., the CPU transfers
to one controller while DMA devices transfer to the other.) The PDP-
11/55 can be expanded up to 248K bytes with the aid of the memory
management, which is an integral part of the central processor. The
fast floating point processor option operates as an integral part of the
central processor, yet interacts with the CPU only when data must be
transferred to or from memory.

PDP-11/55 features include:

e A central processor unit with 64K bytes of 300 nsec bipolar memory,
or 32K bytes of 980 nsec core memory combined with 32K bytes of
300 nsec bipolar memory.

e An optional floating point processor (FP11-C) which provides very
fast arithmetic processing capabilities. It performs a single precision
(32 bit) add in 1.65 microseconds, and a double precision (64 bit)
multiply in only 5.43 microseconds.

e A dual-bus structure that allows you to intermix core and bipolar
memory to optimize system performance.

e|lntegral memory management hardware which provides 18-bit
addressing capability (up to 248K bytes) as well as memory protec-
tion.

e An automatic bootstrap loader which initiates system startup at the
flick of a single switch.

® A real-time clock.

The PDP-11/55 and 11/45 hardware has been optimized towards a
multi-programming environment; the processor operates in three
modes (kernel, supervisor, and user) and has two sets of general
registers.

The PDP-11/55, 11/45 CPUs perform all arithmetic and logical opera-
tions required in the system. They also act as the arbitration unit for
UNIBUS control by regulating bus requests and transferring control of
the bus to the requesting device with the highest priority.

The central processor contains logic for a wide range of operations.

These include high-speed fixed point arithmetic, including hardware

multiply and divide, extensive test and branch operations, and other
160

T

PDP-11/45, PDP-11/55

| I
UNIBUS A >

CORE
MEMORY

UNIBUS
PRIORITY
ARBITRATION
UNIT

|

|

I

|

1

1

|

1

)

|

o o} =
FLOATING ARITHMETIC P

L T AND o

|1 processor F—] ocicar AR

| —— UNIT v

!

|

1

1

T

|

|

I

1

|

!

T | SN N

.|
1
I

UNIBUS B >
' %
SOLID SOLID |
STATE STATE |
MEMORY MEMORY !
I
L CENTRAL PROCESSOR _ _ J

Figure 7-1 PDP-11/55, PDP-11/45 System Block Diagram

control operations. It also provides for the addition of the high-speed
floating point and memory management units.

The CPU operates in three modes: kernel, supervisor, and user. When
in kernel mode, a program has complete control of the processor;
when in any other mode the processor is prohibited from executing
certain instructions, and can be denied direct access to the peripher-
als on the system. This hardware feature can be used to provide com-
plete executive protection in a multi-programming environment.

The central processor contains two sets of eight general registers
which can be used as accumulators, index registers, or as stack point-
ers. Stacks are extremely useful for nesting programs, creating re-
entrant coding, and as temporary storage where a last-in/first-out
structure is desirable. A special instruction, MARK, is provided to
further facilitate re-entrant programming. One of the general registers
is used as the program counter. Three others are used as processor
stack pointers, one for each operational mode.

Figure7-2 illustrates the data paths in the CPU.

The 11/55 and 11/45 CPUs perform all the computer’'s computation
and logic operations in a parallel binary mode through step by step
execution of individual instructions. The instructions are stored in ei-
ther core or solid state memory.

General Registers
The general registers (see Figure 7-3) can be used for a variety of
purposes, the uses varying with requirements.

161

PDP-11/45, PDP-11/55

CENTRAL PROCESSOR ORGANIZATION

UNIBUS A

|

UNIBUS
PRIORITY
ARBITRATION
UNIT

I

| —

MANAGEMENT
UNIT

PROCESSOR STATUS WORD

ARITHMETIC

LOGICAL

UNIBUS [B

MEMORY

MEMORY

GENERAL
REGISTER
SET 1

D

Figure7-2

PROCESSOR

|

FLOATING
POINT
PROCESSOR

Central Processor Data Paths

16
GENERAL
REGISTERS

...'

GENERAL
REGISTER
SET @

RO RO
R R
R2 R2
R3 R3
R4 R4
RS RS
SUPERVISOR KERNEL USER
STACK POINTER STACK POINTER STACK POINTER
R6 | R6] R6
COUNTER
COUNTER

Figure 7-3 The General Registers

Register 7 is used as the machine’s program counter (PC) and con-
tains the address of the next instruction to be executed. It is a general
register often used only for addressing purposes and is not used as an
accumulator for arithmetic operations.

Register 6 is normally used as the processor stack pointer indicating
the last entry in the appropriate stack (a common temporary storage
area with last-in/first-out characteristics). (For information on the pro-
gramming uses of stacks, please refer to Chapter 5.) The three stacks
are called the kernel stack, the supervisor stack, and the user stack.
When an interrupt or trap occurs, the central processor automatically

162

PDP-11/45, PDP-11/55

saves its current status on the processor stack selected by the service
routine. This stack-based architecture facilitates re-entrant program-
ming.

The other 12 registers consist of two sets of unrestricted registers, RO-
R5. The register set currently in operation is determined by the pro-
cessor status word.

The two sets of registers can be used to increase the speed of real-
time data handling or to facilitate multi-programming. The six general
registers in register set 0 could each be used as an accumulator
and/or index register for a real-time task or device, or, as general
registers for a kernel or supervisor mode program. General register
set 1 could be used by the remaining programs or user mode pro-
grams. The supervisor can therefore protect its general registers and
stack from user programs, or from other parts of the supervisor.

Processor Status Word

The processor status word, located at location 777776, contains infor-
mation on the current status of the PDP-11/55, 11/45. See Figure 7-4.
This information includes the register set currently in use, current
processor priority, current and previous operational modes, the con-
dition codes describing the results of the last instruction, and an indi-
cator for detecting the execution of an instruction to be trapped during
program debugging.

5 14 13 T2 110 8 7 5 4 3 2 1 0
[! ‘ I NOT USED PRIORITY ’TINIZ'V’C'
o _
CURRENT MODE .

PREVIOUS MODE *
GENERAL REGISTER
SET(0,1)
*MODE: 00=KERNEL(USED ONLY WITH MEMORY MANAGEMENT)
01=SUPERVISOR
11=USER

Figure 7-4 Processor Status Word

Modes

Mode information includes the present mode, either user, supervisor,
or kernel (bits 15, 14); the mode the machine was in prior to the last
interrupt or trap (bits 13,12); and which register set (general register
set 0 to 1) is currently being used (bit 11).

The three modes permit a fully protected environment for a multi-
programming system by providing the user with three distinct sets of

163

PDP-11/45, PDP-11/55

processor stacks and memory management registers for memory
mapping. In all modes except kernel, a program is inhibited from
executing a HALT instruction, and the processor will trap through
location 4 if an attempt is made to execute this instruction. The pro-
cessor will also ignore the RESET and SPL instructions. In kernel
mode, the processor will execute all instructions.

A program operating in kernel mode can map users’ programs any-
where in core and thus explicitly protect key areas (including the de-
vice’s registers and the processor status word) from the user operat-
ing environment.

Processor Priority

The central processor operates at any of eight levels of priority, 0-7.
When the CPU is operating at level 7, an external device cannot inter-
rupt it with a request for service. The central processor must be
operating at a lower priority than the priority of the external device’s
request in order for the interruption to take effect. The current priority
is maintained in the processor status word (bits 5-7). The eight proces-
sor levels provide an effective interrupt mask, which can be dynami-
cally altered through use of the set priority level(SPL) instruction which
can only be used by the kernel. This instruction allows a kernel mode
program to alter the central processor’s priority without affecting the
rest of the processor status word.

Stack Limit Register

All PDP-11s have a stack overflow boundary at location 400. The ker-
nel stack boundary in the PDP-11/55, 11/45 is a variable boundary set
through the stack limit register found in location 777775.

Once the kernel stack exceeds its boundary, the processor will com-
plete the current instruction and then trap to location 4 (yellow or
warning stack violation). If for some reason the program persists be-
yond the 16-word limit, the processor will abort the offending
instruction, set the stack pointer (R6) to 4 and trap to location 4 (red or
fatal stack violation).

Floating Point Processor

The PDP-11/55, 11/45 floating point processor fits integrally into the
central processor. It provides a supplemental instruction set for per-
forming single and double precision floating point arithmetic opera-
tions and floating integer conversions in parallel with the CPU. It is
described in detail in Chapter 10.

MEMORY
Memory is the primary storage medium for instructions and data. Two
types are available on the 11/45, 11/55 processors:

164

PDP-11/45, PDP-11/55

Solid State Bipolar memory with a cycle time of 300 nsec

Core Magnetic core memory with a cycle time of 980 nsec,
access at 360 nsec (450 nsec at the UNIBUS)

The PDP-11/45 is a core based machine, and the PDP-11/55 is a
bipolar memory based machine containing 32K or 64K bytes (maxi-
mum) of bipolar memory. Any system can be expanded to 248K bytes
in increments of 32K bytes. The system can be configured with various
mixtures of core and bipolar memory up to a maximum limit of 64K
bytes of bipolar memory.

Solid State Memory

The central processor communicates directly with bipolar memory
through a UNIBUS that is internal to the PDP-11/55, 11/45 processing
system. The CPU can control up to two independent solid state memo-
ry controllers. Each controller can have from one to four 2K-byte in-
crements (8K byte maximum) or from one to four 8K-byte increments
(32K byte maximum). 2K- and 8K-byte increments cannot be mixed in
the same bipolar memory controller.

Each controller has dual ports and provides one interface to the CPU
and another to a second UNIBUS. See Figure 7-5.

< =L

’8K coaj 8K CORE 8K cone

MEMORY | | MEMO RY MEMORY

UNIBUS 2 >
[

SOLI
STATE
CONTROL

, SOLID J
STATE
CONTROL

I
o]] B (o]) (])

SSM=SOLID STATE MEMORY MATRIX (2K OR 8K BYTE BIPOLAR)

Figure 7-5 Memory Configuration

There are two UNIBUSes on the PDP-11/55, 11/45 but in a single
processing environment the second UNIBUS is generally connected to
the first and becomes part of it. If the two UNIBUSes are connected,
DMA devices on both UNIBUSes can access bipolar memory. If the
two UNIBUSes are not connected, only DMA devices on UNIBUS 2 can

165

PDP-11/45, PDP-11/55

access bipolar memory and must include UNIBUS arbitration logic
which lends itself to multiprocessor environments (Figure 7-6).

The UNIBUS and data path to the solid state memory are independent.
While the central processor is operating on data in one solid state
memory controller through the direct data path, any device could be
using the UNIBUS to transfer information to core, to another device, or
to the other solid state memory controller. This autonomy significantly
increases the throughput of the system.

R I B —

i M9200 |
| PDP-11/56
| JUMPER U popiias CORE CORE

NS

MODULE *

< SOLT)II UNIBUS B _l r >

STATE PDP-11
MEMORY cru

*The M9200 when installed,
connects Unibus A to Uni-

bus B. If two CPU's are util-
ized, the M9200 ‘must be
removed.

Figure 7-6 Multiprocessor Use of the Second UNIBUS

Core Memory
The central processor communicates with core memory through the
UNIBUS.

Each memory bank operates independently from other banks through
its own controller, which interfaces directly to the UNIBUS. Core
memory can be attached to the UNIBUS until the system contains a
total of 248K (253,952) bytes of memory.

An external device may use the UNIBUS to read or to write to core
memory completely independently of or simultaneously with the cen-
tral processor’s access of solid state memory. Core memory and solid
state memory may be used by the processor interchangeably.

PROCESSOR TRAPS

There are a series of errors and programming conditions which will
cause the central processor to trap to a set of fixed locations. These
include power failure, odd addressing errors, stack errors, time-out
errors, memory parity errors, memory management violations, float-

166

PDP-11/45, PDP-11/55

ing point processor exception traps, use of reserved instructions, use
of the T bit in the processor status word, and use of the IOT, EMT, and
TRAP instructions. Traps are discussed in Chapter 5.

Power Failure

Whenever AC power drops below 95 volts for 110v power (190 volts for
220v) or outside a limit of 47 to 63 Hz, as measured by DC power, the
power fail sequence is initiated. The central processor automatically
traps to location 24 and the power-fail program has 2 msec to save all
volatile information (data in registers), and to condition peripherals for
power fail.

The processor traps to location 24 when power is restored and exe-
cutes the power-up routine to restore the machine to its state prior to
power failure.

0Odd Addressing Errors

This error occurs whenever a program attempts to execute a word
instruction on an odd address (in the middle of a word boundary) or
tries to fetch any instruction from an odd address. The instruction is
aborted and the CPU traps through location 4.

Time-Out Errors

These errors occur when a master synchronization pulse is placed on
the UNIBUS and there is no slave pulse within 5 to 10 usec. This error
usually occurs in attempts to address non-existent memory or peri-
pherals.

The offending instruction is aborted and the processor traps through
location 4.

Reserved Instructions
There is a set of illegal and reserved instructions which cause the
processor to trap through location 10.

MULTIPROGRAMMING

The PDP-11/55, 11/45 architecture, with its three modes of operation,
the two sets of general registers, its memory management capability,
and its program interrupt request facility, provides an ideal environ-
ment for multi-programming systems.

In any multi-programming system there must be some method of
transferring information and control between programs operating in
the same or different modes. The PDP-11/55 and 11/45 provide these
communication paths.

Control Information
Control is passed inwards (in user, supervisor, or kernel mode) by all
traps and interrupts. Kernel routines can map into low physical core

167

PDP-11/45, PDP-11/55

where the vector space is. Thus all traps and interrupts pass through
kernel space to pick up their new PC and PS and to determine the new
mode of processing.

Control is passed outwards (kernel, supervisor, user) by the RTI and
RTT instructions (described in Chapter 4).

Data

Data is transferred between modes by four instructions: Move From
Previous Instruction Space (MFPI), Move From Previous Data Space
(MFPD), Move to Previous Instruction Space (MTPI) and Move to
Previous Data Space (MTPD). There are four instructions rather than
two, as 11/45 and 11/55 memory management distinguishes between
instruction and data space. The instructions are described fully in
Chapter 4. However, it should be noted that these instructions have
been designed to allow data transfers to be under the control of the
innermost mode (kernel, supervisor, user) and not the outermost, thus
providing protection of an inner program from an outer.

Processor Status Word

The PDP 11/55, 11/45 protect the PS from implicit references by su-
pervisor and user programs which could result in damage to an inner
level program.

A program operating in kernel mode can perform any manipulation of
the PS. Programs operating at outer levels (supervisor and user) are
inhibited from changing bits 5-7 (the processor’s priority). They are
also restricted in their treatment of bits 15, 14 (current mode); bits 13,
12 (previous mode); and bit 11 (register set); these bits may be set in
user or supervisor mode. However, in order to clear these bits, a trap
or interrupt must be issued which returns the system to kernel mode.

PDP-11/45, 11/55 SPECIFICATIONS

Memory

Min size: 64K bytes
Max size: 248K bytes
Type: bipolar, core
Parity: optional

Central Processor

Instructions basic set + XOR, SOB, MARK,
SXT, RTT, MUL, DIV, ASH,
ASHC, SPL

Programming modes: 3

No.of general registers: 16 (two sets of eight)

168

PDP-11/45, PDP-11/55

Auto hardware interrupts: yes
Auto software interrupts: yes
Power fail/auto restart: yes
NOTES:

e CPU fastbus activity does not degrade data transfer speed of either
bus, except when both buses are simultaneously accessing the same
MS11 control board.

e|f there are two MS11 controls in a CPU, transfers on one bus to one
memory do not interact with transfers on the other bus to the other
memory.

e Data transfer rates for the PDP-11/55, 11/45:

Configuration #1

The maximum system data transfer rate with UNIBUS controllers
transferring to interleaved MM11-UP core memory over the UNIBUS
while the CPU transfers to bipolar memory over the fastbus is 9.0
megabytes per second.

UNIBUS A
cpPU l T T—‘
MM11-UP UNIBUS UNIBUS
CORE CONTROLLER CONTROLLER

BIPOLAR
CONTROLLER

l

BIPOLAR
MEMORY

Figure 7-7 Configuration #1

Configuration #2

The maximum system data transfer rate with a UNIBUS controller
transferring to bipolar memory while the CPU transfers to the same
bipolar memory (same bipolar memory controlier) is 7.14 megabytes
per second.

169

CPU

PDP-11/45, PDP-11/55

BIPOLAR
MEMORY
CONTROLLER

1

BIPOLAR
MEMORY

UNIBUS A
UNIBUS B mm%g UNIBUS UNIBUS
MODULE CONTROLLER CONTROLLER

Figure 7-8 Configuration #2

Configuration #3

The maximum system data transfer rate with a UNIBUS controller
transferring to one bipolar controller while the CPU transfers to the

other bipolar controller is 10.78 megabytes per second.

eThe two MS11 solid state memory controls are connected to a single
UNIBUS (UNIBUS B) that can be easily separated from the 11/45
CPU UNIBUS (UNIBUS A) by removing a simple jumper module
(M9200), thus facilitating dual UNIBUS systems. UNIBUS B does not
have its own UNIBUS arbitration control logic; thus, a second PDP-
11 CPU is required for other than NPR transfers from a single device.

Figure 7-9 Configuration#3

CONSOLE OPERATION

The PDP-11/55, 11/45 system operator’s console is designed for con-
venient system control. A complete set of function switches and dis-
play indicators provide comprehensive status monitoring and control

facilities.

170

UNIBUS A
cpu I T T
9200
] M UNIBUS UNIBUS
JUMPER
|) I MODULE CONTROLLER CONTROLLER
BIPOLAR BIPOLAR
CONTROLLER CONTROLLER
BIPOLAR BIPOLAR
MEMORY MEMORY

.

.

PDP-11/45, PDP-11/55

Console

The operator’s console for the PDP-11/55, 11/45 provides the follow-

ing facilities:

ea system key switch (OFF/ON/LOCK)

ea bank of seven indicator lights, indicating the following central pro-
cessor states: RUN, PAUSE, MASTER(UNIBUS), USER, SUPERVI-
SOR, KERNEL, DATA.

ean 18-bit address register display

ean addressing error indicator light (ADRS ERR)
ea 16-bit data register display

ean 18-bit switch register

econtrol knobs

eaddress display select
USER | VIRTUAL
USER D VIRTUAL
SUPERVISOR I VIRTUAL
SUPERVISOR D VIRTUAL
KERNEL | VIRTUAL
KERNEL D VIRTUAL
PROGRAM PHYSICAL
CONSOLE PHYSICAL

edata display select
DATA PATHS
BUS REGISTER
FPP uADRS.CPU nADRS.
DISPLAY REGISTER

econtrol switches
LOAD ADRS (Load Address)
EXAM (Examine)
CONT (Continue)
ENABLE/HALT
S-INST/S-BUS CYCLE (Single Instruction/Single Bus Cycle)
START
DEPOSIT
REG EXAM (Register Examine)
REG DEPOSIT (Register Deposit)

System Power Switch
The system power switch controls central processor power as follows:

OFF Power off for CPU. Solid state memory still receives
power in order to insure data retention.

171

POWER

PANEL LOCK

PDP-11/45, PDP-11/55

Power ON for CPU — normal use, all console
controls operable.

Power ON for CPU — all console controls not opera-
ble except switch register.

Central Processor State Indicators
This bank of indicator lights shows the current major system state as

follows:
RUN

PAUSE

MASTER

USER

SUPERVISOR

KERNEL

DATA

The CPU is executing program instructions. If the
instruction being executed is a WAIT instruction, the
RUN light will be on. The CPU will proceed from the
wait on receipt of an external interrupt, console in-
tervention, or power down.

The CPU is inactive because the current instruction
execution has been completed as far as possible
without more data from the UNIBUS, and the CPU is
waiting to regain control of the UNIBUS (UNIBUS
mastership).

1) The CPU is in control of the UNIBUS (UNIBUS
Master). The CPU relinquishes control of the UNI-
BUS during DMA and NPR data transfers.

2)The CPU has been HALTed from the system oper-
ator’s console.

The CPU is executing program instructions in user
mode. When the memory management unit is en-
abled all address references are in user virtual
address space.

The CPU is executing program instructions in super-
visor mode. When the memory management unit is
enabled, all address references are in supervisor
virtual addressing space.

The CPU is executing program instructions in kernel
mode.

If on, the last memory reference was to D address
space in the current CPU mode. If a 0, the last mem-
ory reference was to | address space in the current
CPU mode.

172

1

|

PDP-11/45, PDP-11/55

Address Display Register

The address display register is primarily a software development and
maintenance aid. The contents of this 18-bit indicator are controlled
by the address select knob as follows:

VIRTUAL

PROGRAM
PHYSICAL

CONSOLE
PHYSICAL

The address display register indicates the current
address reference as a 16-bit virtual address when
the memory management unit is enabled; otherwise,
it indicates the true 16-bit physical address. Bits 17
and 16 will be off unless the memory management
unit is disabled and the current address references
some UNIBUS device register in the uppermost 8K
bytes of basic address space (i.e., 248K-256K).

The address display register indicates the current
address reference as a true 18-bit physical address.

The address display register indicates the current
address reference as a 16-bit virtual address when
the memory management unit is enabled; otherwise,
it indicates the true 16-bit physical address.

Bits 17 and 16 indicate the contents of correspond-
ing bits of the switch register as of the last LOAD
ADRS console operation.

Addressing Error Display
This 1-bit display indicates the occurrence of any addressing errors.
The following address references are invalid:

enon-existent memory

eaccess control violations
eunassigned memory pages

Data Display Register

DATA PATHS

BUS REGIS-
TER

FPP
wADRS.CPU
wADRS.

The data display register indicates the current out-
put of the PDP-11/55, 11/45 arithmetic/logical unit
subsystem (SHFR).

The data display register indicates the current out-
put of the PDP-11/55, 11/45 CPU UNIBUS, semicon-
ductor memory, or of the internal bus.

The data display register indicates the current ROM
address, FPP control micro-program (bits 15-8), and
the CPU control micro-program (bits 7-0).

173

PDP-11/45, PDP-11/55

DISPLAY The data display register indicates the current con-
tents of the 16-bit write-only switch register located
at physical address 777570. This register is generally
used to display diagnostic information, although it
can be used for other purposes.

Switch Registers
The functions of this 18-bit bank of switches are determined by:

econtrol switches
e address display select knob

These functions will be described in the next section with the appropri-
ate control switch,

Note that the current setting of the switch register may be read under
program control from a read-only register at physical address 777570.

Control Switches

LOAD ADRS (Load Address)

When the LOAD ADRS switch is depressed, the contents of the switch
register are loaded into the CPU bus address register and displayed in
the address display register lights. If the memory management unit is
disabled, the address display is the true physical address.

If the memory management unit is enabled, the interpretation of the
address indicated by the switch register is determined by the address
display select knob.

Note that the LOAD ADRS function does not distinguish between PRO-
GRAM PHYSICAL and CONSOLE PHYSICAL.

EXAM (Examine)

Depressing the EXAM switch causes the contents of the current loca-
tion specified in the CPU bus address register to be displayed in the
DATA display register.

Depressing the EXAM switch again causes a EXAM-STEP operation to
occur. The result is the same as the EXAM except that the contents of
the CPU Bus Address Register are incremented by two before the
current location has been selected for display. An EXAM-STEP will not
cross a 64K byte memory block boundary.

An EXAM operation which causes an ADRS ERR (Addressing Error)
must be corrected by performing a new LOAD ADRS operation with a
.valid address.

REG EXAM (Register Examine)

Depressing the REG EXAM switch causes the contents of the general
purpose register specified by the low order five bits of the bus address

174

o

e

PDP-11/45, PDP-11/55

register to be displayed in the data display register. In the PDP-11/55,
consecutive register examines will automatically increment to the next
general purpose register.

The switch register is interpreted as follows:

Contents Register Displayed

0-5 general registers 0-5 (set 0)
6 kernel mode register 6

7 program counter (PC)
108—158 general registers 0-5 (set 1)
168 supervisor mode register 6
179 user mode register R6
CONT (Continue)

Depressing the CONT switch causes the CPU to resume executing
instructions of bus cycles at the address specified in the Program
Counter. The CONT switch has no effect when the CPU is in RUN state.

The function of the CONT switch is modified by the setting of the
ENABLE/HALT and S/INST-S/BUS cycles switches as follows:

ENABLE (up) CPU resumes normal operation under program con-
trol.

HALT (down) S/INST (up) — CPU executes next instruction then
stops. '

S/BUS cycle (down) — CPU executes next address
reference, then stops (i.e., one UNIBUS cycle).

ENABLE/HALT

The ENABLE/HALT switch is a 2-position switch with the following

functions.

ENABLE (up) The GPU is able to perform normal operations under
program control.

HALT (down) The CPU is stopped and is operable only by the
console switches.

The setting of the ENABLE/HALT switch modifies the function of the
CONTINUE and START switches.

S/INST—S/BUS CYCLE (Single Instruction/Single Bus Cycle)

The S/INST-S/BUS CYCLE switch affects only the operation of the
CONTINUE switch. This switch has no effect on any other switch when
the ENABLE/HALT switch is set to ENABLE.

175

PDP-11/45, PDP-11/55

START

The functions of the START switch depend upon the setting of the

ENABLE/HALT switch as follows:

ENABLE Depressing the START switch causes the CPU to
start executing program instructions at the address
specified by the current contents of the CPU bus
address register. The START switch has no effect
when the CPU is in run state. '

HALT Depressing the START switch causes a console re-
set to oceur.

DEP (Deposit)

Raising the DEP switch causes the current contents of the switch
register to be deposited into the address specified by the current
contents of the CPU bus address register.

Raising the DEP switch again causes a DEP-STEP operation to occur.
The result is the same as the DEP, except that the contents of the CPU
bus address register are incremented by two before the current loca-
tion has been selected for the deposit operation. A DEP-STEP will not
cross a 64K byte memory block boundary.

A DEP operation which causes an ADRS ERR (Addressing Error) is
aborted and must be corrected by performing a new LOAD ADRS
operation with a valid address.

REG DEP (Register Deposit)

Raising the REG DEP causes the contents of the switch register to be
deposited into the general purpose register specified by the lowest
four bits of the current contents of the CPU bus address register. In the
PDP-11/55, 11/45, consecutive register deposits will automatically in-
crement to the next general purpose register (GPR).

The CPU bus address register should have been loaded previously by
a LOAD ADRS operation according to the switch register settings
mentioned in the section describing REG EXAM.

NOTE: The EXAM and DEP switches are coupled to enable an EXAM-
DEP-EXAM sequence to be carried out on a location, without having to
do a LOAD ADRS. The following sequence is possible:

EXAM

DEP ADDRESS A
EXAM

STEP EXAM

DEP ADDRESS A + 1
EXAM

176

PDP-11/45, PDP-11/65

ADDRESS SELECT

The ADDRESS SELECT knob is used for two functions. It provides an
interpretation for the address display register. It also determines for
EXAM, STEP-EXAM, DEP, and STEP-DEP which set of page address
registers, if any, will be used to relocate the address loaded by the LD
ADRS function.

KERNEL I, KERNEL D, SUPER I, SUPER D, USER | and USER D
positions cause the address loaded into the switch register to be relo-
cated if the memory management option is installed and operating.
Which set of the six sets of page address registers (PARs) is used is
determined by the ADDRESS SELECT switch. EXAMs, STEP-EXAMSs,
DEPs and STEP-DEPs under these conditions are relocated to the
physical address specified by the appropriate PAR. If the action at-
tempted from the console is not allowed (for example, attempting to
DEP into a read-only page) the ADRS ERROR indicator will come on. A
new LD ADRS must be done to clear this condition. Note that, in the
general case, the physical location accessed is different from the virtu-
al address loaded into the switch register. The address display regis-
ter will always, in these six positions, show exactly what was loaded
from the switch register. These positions make it convenient to exam-
ine and change programs which are subject to relocation, without
requiring any knowledge of where they have actually been relocated in
physical memory.

PROGRAM PHYSICAL — This position is provided to allow monitoring
the physical addresses being accessed by a program when “single
stepping” through the program. It is most useful when the accesses
are being relocated by the memory management option. In this case,
the address shown in the address display register is different than that
shown in the other positions. This position should not be used to
perform EXAM, STEP-EXAM, DEP or STEP-DEP functions.

CONSOLE PHYSICAL — This position is provided to allow EXAM,
STEP EXAM, DEP and STEP-DEP functions to physical memory
locations whether or not the memory management option is installed
or operating. In this position the address display register indicates the
physical address loaded from the switch register.

MEMORY MANAGEMENT ON THE PDP-11/55, 11/45

The PDP-11/55, 11/45 memory management unit provides the hard-
ware facilities necessary for complete memory management, protec-
tion, and relocation. It is designed to be a memory management facili-
ty for systems with the memory size greater than 56K bytes and for
multi-user, multi-programming systems requiring memory protection
and relocation facilities.

177

PDP-11/45, PDP-11/55

Although some of the material in this section duplicates that in the
section on 11/34 memory management, it is repeated here so that the
reader does not have to refer to the previous section.

The power and efficiency of the PDP-11/55, 11/45 are most effectively
utilized when several programs are run simultaneously. Several user
programs are resident in memory at any given time in a multi-pro-
gramming environment. The tasks of the supervisory program are: to
control the execution of the various user programs, to manage the
allocation of memory and peripheral device resources, and to control
each program carefully, safeguarding the integrity of the system.

In a multi-programming system, the memory management unit pro-
vides the means for assigning memory pages to a user program and
preventing that user from making any unauthorized access to these
pages outside the assigned area. Thus, a user can effectively be
prevented from accidental or willful destruction of any other user pro-
gram or the system executive program.

The basic characteristics of the PDP-11/55, 11/45 memory manage-
ment unit are:

© 16 user mode memory pages

@ 16 supervisor mode memory pages

® 16 kernel mode memory pages

e 8 pages in each mode for instructions

®8 pages in each mode for data

epage lengths from 32 to 4096 words

eeach page provided with full protection and relocation
etransparent operation

©6 modes of memory access control

ememory extension to 124K words (248K bytes)

PDP-11 FAMILY BASIC ADDRESSING LOGIC

The addresses generated by all PDP-11 family central processor units
(CPUs) are 18-bit direct byte addresses. Although the PDP-11 family
word length and operational logic are all 16-bit length, the UNIBUS
and CPU addressing logic is actually 18-bit length. Thus, while the
PDP-11 word can contain address references only up to 64K bytes, the
CPU and UNIBUS can reference addresses up to 256K bytes. These
extra two bits of addressing logic provide the basic framework for
expanded memory operation.

In addition to the word length constraint on basic memory addressing
space, the uppermost 8K bytes of address space are always reserved

178

PDP-11/45, PDP-11/55

for UNIBUS /0 device registers. In a basic PDP-11/55, 11/45 memory
configuration, (without the memory management option), all address
references to the uppermost 8K bytes of 16-bit address space
(170000-177777) are converted to full 18-bit references with bits 17
and 16 always set to 1. Thus, a 16-bit reference to the 1/0 device
register at address 173224 is automatically internally converted to a
full 18-bit reference to the register at address 773224. The basic PDP-
11/55, 11-/45 configuration can address up to 56K bytes of true mem-
ory and 8K bytes of UNIBUS I/O device registers directly. Memory
configurations beyond this require the PDP-11/55, 11/45 memory
management unit.

VIRTUAL ADDRESSING

When the PDP-11/45 memory management unit is operating, the nor-
mal 16-bit direct byte address is no longer interpreted as a direct
physical address (PA) but as a virtual address (VA) containing infor-
mation to be used in constructing a new 18-bit physical address. The
information contained in the virtual address is combined with reloca-
tion information contained in the page address register (PAR) to yield
an 18-bit physical address (PA). Using the memory management unit,
memory can be dynamically allocated in pages, each composed of
from 1 to 128 integral blocks of 64 bytes.

PHYSICAL
ADDRESS SPACE

128K
PAGE 5
VIRTUAL INSTRUCTION/DATA
ADDRESS SPACE
32K
PAR 7 PAGE 6
—o PAR 6
— PAR 5
. PAR 4 PAGE 7
PAR 3 \
PAR 2 PAGE 4
PAR 1
PAR O
[¢] (0]
VIRTUAL ADDRESS PAGE PHYSICAL ADDRESS
(16 BITS) ADDRESS (18 BITS)

REGISTERS

PAR = Page Address Register

Figure 7-10 Virtual Address Mapping into Physical Address

The starting physical address for each page is an integral multiple of
64 bytes, and each page has a maximum size of 8198 bytes. Pages
may be located anywhere within the 256K bytes physical address

179

PDP-11/45, PDP-11/55

space. The determination of which set of 16 page registers is used to
form a physical address is made by the current mode of operation of
the CPU, i.e., kernel, supervisor, or user mode.

INTERRUPT CONDITIONS UNDER
MEMORY MANAGEMENT CONTROL

The memory management unit relocates all addresses. When it is
enabled, all trap, abort, and interrupt vectors are considered to be in
kernel mode virtual address space. When a vectored transfer occurs,
control is transferred according to a new program counter (PC) and
processor status word (PS) contained in a two-word vector relocated
through the kernel page address register set. Relocation of trap ad-
dresses means that the hardware is capable of recovering from a
failure in the physical bank of memory.

When a trap, abort, or interrupt occurs, the push of the old PC, old PS
is to the user/supervisor/kernel R6 stack specified by CPU mode bits
15,14 of the new PS in the vector (bits 15,14: 00 = kernel, 01 = super-
visor, 11 = user). The CPU mode bits also determine the new PAR set.
In this manner it is possible for a kernel mode program to have com-
plete control over service assignments for all interrupt conditions,
since the interrupt vector is located in kernel space. The kernel pro-
gram may assign the service of some of these conditions to a supervi-
sor or user mode program simply by setting the CPU mode bits of the
new PS in the vector to return control to the appropriate mode.

CONSTRUCTION OF A PHYSICAL ADDRESS

All addresses with memory relocation enabled either reference infor-
mation in instruction (l) space or data (D) space. | space is used for all
instruction fetches, index words, absolute addresses and immediate
operands; D space is used for all other references. | space and D
space each have 8 PARs in each mode of CPU operation, kernel,
supervisor, and user. Using status register #3, the operating system
may elect to disable D space and map all references (instructions and
data) through | space, or to use both | and D space.

The basic information needed for the construction of a physical ad-
dress (PA) comes from the virtual address (VA), which is illustrated in
Figure 7-11, and the appropriate PAR set.

[APF l DF
ACTIVE PAGE DISPLACEMENT FIELD
FIELD

Figure 7-11 Interpretation of a Virtual Address

180

T

N

PDP-11/45, PDP-11/55

The virtual address (VA) consists of:

ethe Active Page Field (APF). This 3-bit field determines which of eight
page address registers (PARO-PAR7) will be used to form the physi-
cal address (PA).

ethe Displacement Field (DF). This 13-bit field contains an address
relative to the beginning of a page. This permits page lengths up to
4K words (2,; = 8K bytes). The DF is further subdivided into two
fields as shown in Figure 7-12).

12 6 5 0

r BN | o]1-] J

BLOCK NUMBER DISPLACEMENT IN BLOCK

Figure 7-12 Displacement Field of Virtual Address

The displacement field (DF) consists of:

ethe Block Number (BN). This 7-bit field is interpreted as the block
number within the current page.

ethe Displacement in Block (DIB). This 6-bit field contains the
displacement within the block referred to by the block number (BN).

The remaining information needed to construct the physical address
comes from the 12-bit page address field (PAF), part of the page
adddress register (PAR), and specifies the starting address of the
memory page that the PAR describes. The PAF is actually a block
number in the physical memory, PAF = 3 indicates a starting address
of 96 (3 X 32) words in physical memory.

The formation of a physical address (PA) takes 90 ns. Thus, in situa-

tions which do not require the facilities of the memory management

unit, it should be disabled to permit time savings.

The logical sequence involved in constructing a physical address (PA)

is as follows:

1. Select a set of page address registers depending on the space to
be referenced.

2. The active page field (APF) of the virtual address is used to select a
page address register (PAR0-PAR7).

3. The page address field (PAF) of the selected page address register
(PAR) contains the starting address of the currently active page as
a block number in physical memory.

181

PDP-11/45, PDP-11/55

4. The block number (BN) from the virtual address (VA) is added to
the block number from the page address field (PAF) to yield the
number of the block in physical memory (PBN-Physical Block
Number) which will contain the physical address (PA) being con-
structed.

5. The displacement in block (DIB) from the displacement field (DF) of
the virtual address (VA) is joined to the physical block number
(PBN) to yield a true 18-bit PDP-11/55, 11/45 physical address
(PA).

15 1312 [o]
VA [APF 1 OF]

VA [APF l BN | DIB j——

12 4 o]

P %/ _ o

N @ Par
N @ P

! PBN “l\hl oiB l

[PHYSICAL ADDRESS I

Figure 7-13 Construction of a Physical Address

MANAGEMENT REGISTERS

The PDP-11/55, 11/45 memory management unit implements three
sets of registers. There are 32 registers in all, two groups of 16 per set.
Each register contains 16 bits. One set of registers is used in kernel
mode, another in supervisor, and the other in user mode. The choice
of which set is to be used is determined by the current CPU mode
contained in the processor status word. Each set is subdivided into
two groups of 16 registers. One group is used for references to in-
struction (I) space, and one to data (D) space. The I-space group is

182

1

B —

PDP-11/45, PDP-11/55

used for all instruction fetches, index words, absolute addresses and
immediate operands. The D-space group is used for all other refer-
ences, providing it has not been disabled by status register number 3.
Each group is further subdivided into two parts of 8 registers. One part
is the page address register (PAR) whose function has been described
in previous paragraphs. The other part is the page descriptor register
(PDR). PARs and PDRs are always selected in pairs by the top three
bits of the virtual address. A PAR/PDR pair contains all the informa-
tion needed to describe and locate a currently active memory page.

The various memory management registers are located in the upper-
most 4K of PDP-11 physical address space along with the UNIBUS /0

‘device registers. For the actual addresses of these registers, refer to

memory management unit register map at the end of this chapter.

l R] PROCESSOR STATUS WORDJ

% | @
|
KERNEL (00) SUPERVISOR (01) USER(11)
PAR PDR PAR PDR PAR POR
1 SPACE
PAR POR PAR POR PAR POR

D SPACE

Figure 7-14 Active Page Registers

Page Address Registers (PAR)

The page address register (PAR) contains the page address field
(PAF), a 12-bit field which specifies the starting address of the page as
a block number in physical memory.

183

PDP-11/45, PDP-11/55

Figure 7-15 Page Address Register

Bits 15-12 of the PAR are unused and reserved for possible future use.

The page address register (PAR) which contains the page address
field (PAF) may be thought of as a relocation register containing a
relocation constant, or as a base register containing a base address.
Either interpretation indicates the basic importance of the page ad-
dress register (PAR) as a relocation tool.

Page Descriptor Register
The page descriptor register (PDR) contains information relative to
page expansion, page length, and access control.

15 14

7. [« [w =] =]

Figure 7-16 Page Descriptor Register

Access Control Field (ACF)

This 3-bit field, occupying bits 2-0 of the page descriptor register
(PDR), contains the access rights to this particular page. The access
codes or keys specify the manner in which a page may be accessed
and whether or not a given access should resultin a trap or an abort of
the current operation. A memory reference which causes an abort is
not completed, whereas a reference causing a trap is completed.
When a memory reference causes a trap to occur, the trap does not
occur until the entire instruction has been completed. Aborts are used
to catch missing page faults and prevent illegal access.

In the context of access control the term write is used to indicate the
action of any instruction which modifies the contents of any address-
able word. Write is synonymous with what is usually called a store or
modify in many computer systems.

The modes of access control are as follows:

000 non-resident abort all accesses

001 read-only abort on write at-
tempt, memory
management trap
on read

184

il

PDP-11/45, PDP-11/55

010 read-only abort on write at-
tempt

011 unused abort all accesses
— reserved for fu-
ture use

100 read/write memory manage-

ment trap upon
completion of a
read or write

101 read/write memory manage-
ment trap upon
completion of a

write
110 read/write no system
trap/abort action
111 unused abort all accesses
— reserved for fu-
ture use

It should be noted that the use of | space provides a further form of
protection, execute only.

Access Information Bits

A Bit (bit 7) — This bit is used by software to determine whether or not
any accesses to this page met the trap condition specified by the
access control field (ACF). (A = 1 is affirmative.) The A bit is used in
the process of gathering memory management statistics.

W bit (bit 6) — This bit indicates whether or not this page has been
modified (i.e. written into) since either the PAR or PDR was loaded. (W
= 1 is affirmative.) The W bit is useful in applications which involve
disk swapping and memory overlays. It is used to determine which
pages have been modified and must be saved in their new form and
which pages have not been modified and can simply be overlaid.

Note that A and W bits are reset to 0 whenever either PAR or PDR is
modified.

Expansion Direction (ED)

This 1-bit field, located at bit 3 of the page descriptor register (PDR),
specifies whether the page expands upward from relative zero (ED =
0) or downwards towards relative zero (ED = 1). Relative zero, in this
case, is the PAF (Page Address Field). Expansion is done by changing
the page length field. In expanding upwards, blocks with higher rela-
tive addresses are added; in expanding downwards, blocks with lower
relative addresses are added to the page. Upward expansion is usual-

185

PDP-11/45, PDP-11/55

ly used to add more program space, while downward expansion is
used to add more stack space.

Page Length Field (PLF)
The 7-bit field, occupying bits 14-8 of the page descriptor register .
(PDR), specifies the number of blocks in the page. A page consists of
at least one and of at most 128 blocks, and occupies contiguous core
locations. If the page expands upwards, this field contains the length
of the page minus one (in blocks). If the page expands downwards,
this field contains 128 minus the length of the page (in blocks).

A length error occurs when the block number (BN) of the virtual ad-
dress (VA) is greater than the page length field (PLF), if the page
expands upwards; or if the page expands downwards, when the BN is
less than the PLF.

Reserved Bits
Bits 15, 4, and 5 are reserved for future use, and are always 0.

FAULT RECOVERY REGISTERS

Aborts and traps generated by the memory management hardware
are vectored through kernel virtual location 250. Status registers 0, 1,
2, and 3 are used in order to differentiate an abort from a trap, to
determine why the abort or trap occurred, and to allow for easy pro-
gram restarting. Note that an abort or trap to a location which is itself
an invalid address will cause another abort or trap. Thus the kernel
program must insure that kernel virtual address 250 is mapped into a
valid address, otherwise a loop will occur which will require console
intervention.

Status Register 0 (SRO) (status and error indicators)

SRO contains error flags, the page number whose reference caused
the abort, and various other status flags. The register is organized as
shown in Figure 7-17.

Bits 15-12 are the error flags. They may be considered to be in a
priority queue; flags to the right are less significant and should be
ignored. That is, a non-resident fault service routine would ignore
length, access control, and memory management flags. A page length
service routine would ignore access control and memory management
faults, etc. When set (error conditions), these bits cause memory man-
agement to freeze the contents of bits 1-7 and status registers 1 and 2.
This is done to facilitate error recovery. Bits 15-12 are enabled by a
signal called RELOC. RELOC is true when an address is being relocat-
ed by the memory management unit. This implies that either SRO, bit 0
is equal to 1 (relocation operating) or that SRO, bit 8 (MAINTENANCE)
186

B |

PDP-11/45, PDP-11/55

15 14 13

ENEN / EEEERCEEEE

LENGTH ERROR
ABORT-READ ONLY

ACCESS VIOLATION

TRAP-MEMORY MANAGEMENT
NOT USED
NOT USED
ENABLE MEMORY MANAGEMENT TRAR
MAINTENANCE MODE.
INSTRUCTION COMPLETED
PAGE MODE
PAGE ADDRESS SPACE I/D
PAGE NUMBER
ENABLE RELOCATION

Figure 7-17 Format of Status Register 0 (SR0)

is equal to 1 and the memory reference is the final one of a destination
calculation (maintenance/destination mode).

NOTE: Status register 0 (SRO0) bits 0, 8, and 9 can
be set under program control to provide meaningful
control information. However, information written in-
to all other bits is not meaningful. Only that informa-
tion which is automatically written into these
remaining bits as a result of hardware actions is use-
ful as a monitor of the status of the memory manage-
ment unit. Setting bits 15-12 under program control
will not cause traps to occur; however, these bits
must be reset to 0 after an abort or trap has occurred
in order to resume status monitoring.

Abort Non-resident

Bit 15 is the abort non-resident bit. It is set by attempting to access a
page with an access control field (ACF) key equal to 0, 3, or 7. It is also
set by attempting to use memory relocation with a processor mode of
2.

Abort Page Length

Bit 14 is the abort page length bit. It is set by attempting to access a
location in a page with a block number (virtual address bits 12-6) that
is outside the area authorized by the page length field (PLF) of the
page descriptor register (PDR) for that page. Bits 14 and 15 may be set
simultaneously by the same access attempt.

187

PDP-11/45, PDP-11/55

Abort Read-Only
Bit 13 is the abort read-only bit. It is set by attempting to write in a
read-only page. Read-only pages have access keys of 1 or 2.

Trap Memory Management

Bit 12 is the trap memory management bit. It is set by a read operation
which references a page with an access control field (ACF) of 1 or 4, or
by a write operation to a page with an ACF key of 4 or 5.

Bits 11 and 10 are spare locations and are always equal to 0. They are
unused and reserved for possible future expansion.

Enable Memory Management Traps

Bit 9 is the enable memory management traps bit. It can be set or
cleared by doing a direct write into SRO. If bit 9 is 0, no memory
management traps will occur. The A and W bits will, however, continue
to log potential memory management traps. When bit 9 is set to 1, the
next potential memory management trap will cause a trap vector
through kernel virtual address 250.

NOTE: If an instruction which sets bit 9 to 0 (dis-
able memory management trap) causes a potential
memory management trap in the course of any of its
memory references prior to the one actually chang-
ing SRO, then the trap will occur at the end of the
instruction anyway.

Maintenance/Destination Mode

Bit 8 specifies maintenance use of the memory management unit. Itis
provided for diagnostic purposes only and must not be used for other
purposes.

Instruction Completed

Bit 7 indicates that the current instruction has been completed. It will
be set to 0 during T bit, parity, odd address, and time-out traps and
interrupts. This provides error handling routines with a way of deter-
mining whether the last instruction will have to be repeated in the
course of an error recovery attempt. Bit 7 is read-only (it cannot be
written). It is initialized to a 1. Note that EMT, TRAP, BPT, and IOT do
not set bit 7.

Processor Mode

Bits 5 and 6 indicate the CPU mode (user/supervisor/kernel) associat-
ed with the page causing the abort. (kernel = 00, supervisor = 01, user
= 11). If an illegal mode (10) is specified, bit 15 will be set and an abort
will occur.

188

n

I [

PDP-11/45, PDP-11/55

Page Address Space
Bit 4 indicates the type of address space (| or D) the unitwas in when a
fault occurred (0 = | space, 1 = D space). Itis used in conjunction with
bits 3-1, page number.

Page Number

Bits 3-1 contain the page number of a reference causing a memory
management fault. Note that pages, like blocks, are numbered from 0
upwards.

Enable Relocation

Bit 0 is the enable relocation bit. When it is set to 1, all addresses are
relocated by the unit. When bit 0 is set to 0, the memory management
unitis inoperative and addresses are not relocated or protected.

Status Register 1 (SR1)

SR1 records are autoincrement/decrement of the general purpose
registers, including explicit references through the PC. SR1 is cleared
at the beginning of each instruction fetch. Whenever a general pur-
pose register is either autoincremented or autodecremented, the
register number and the amount (in 2’s complement notation) by
which the register was modified are written into SR1.

The information contained in SR1 is necessary to accomplish an effec-
tive recovery from an error resulting in an abort. The low order byte is
written first. It is not possible for a PDP-11 instruction to autoincre-
ment/decrement more than two general purpose registers per instruc-
tion before an abort-causing reference. Register numbers are record-
ed MOD 8; thus it is up to the software to determine which set of
registers (user/supervisor/kernel — general set 0/general set 1) was
modified, by determining the CPU and register modes as contained in
the PS at the time of the abort. The 6-bit displacement on R6(SP) that
can be caused by the MARK instruction cannot occur if the instruction
is aborted.

15 110 8 7 3 2 [¢]
AMOUNT CHANGED REGISTER ~ AMOUNT CHANGED REGISTER
(2's COMPLEMENT) NUMBER (2's COMPLEMENT) NUMBER

Figure 7-18 Format of Status Register 1 (SR1)

Status Register 2
SR2 is located with the 16-bit virtual address (VA) at the beginning of
each instruction fetch, or with the address trap vector at the beginning

189

PDP-11/45, PDP-11/55

of an interrupt, T trap, parity, odd address, and time-out traps. Note
that SR2 does not get the trap vector on EMT, TRAP, BPT and 10T
instructions. SR2 is read-only; it can not be written into. SR2 is the
virtual address program counter.

Status Register 3

Status Register 3 (SR3) enables or disables the use of the D-space
PARs and PDRs. When D space is disabled, all references use the I-
space registers; when D space is enabled, both the I-space and D-
space registers are used. Bit 0 refers to the user’s registers, bit 1 to the
supervisor's registers, and bit 2 to the kernel’s registers. When the
appropriate bits are set, D space is enabled; when clear, it is disabled.
Bits 3-15 are unused. On initialization this register is set to 0 and only |
space isin use.

1

L T 1)
—_—_T___J

KERNEL.
SUPERVISOR
USER

Figure 7-19 Format of Status Register 3 (SR3)

Instruction Back-Up/Restart Recovery

The process of backing-up and restarting a partially completed in-

struction involves:

1. Performing the appropriate memory management tasks to alleviate
the cause of the abort (loading a missing page, etc.).

2. Restoring the general purpose registers indicated in SR1 to their
original contents at the start of the instruction by subtracting the
modify value specified in SR1.

3. Restoring the PC to the abort-time PC by loading R7 with the
contents of SR2, which contains the value of the virtual PC at the
time the abort-generating instruction was fetched.

Note that this back-up/restart procedure assumes that the general
purpose register used in the program segment will not be used by the
abort recovery routine. This is automatically the case if the recovery
program uses a different general register set.

Clearing Status Registers Following Trap/Abort
At the end of a fault service routine bits 15-12 of SRO must be cleared
(set to 0) to resume error checking. On the next memory reference

190

o

PDP-11/45, PDP-11/55

following the clearing of these bits, the various status registers will
resume monitoring the status of the addressing operations, (SR2) will
be loaded with the next instruction address, SR1 will store register
change information, and SRO will log memory management status
information.

Typical Memory Page

When the memory management unit is enabled, the kernel mode pro-
gram, a supervisor mode program and a user mode program each
have 8 active pages (described by the appropriate page address
registers and page descriptor registers) for data; and 8 for instruc-
tions. Each segment is made up of from 1 to 128 blocks and is pointed
to by the page address field (PAF) of the corresponding page address
register (PAR) as illustrated in Figure 7-20.

VA 157777, PA 33777

VAT
/////////////////////////////
7

-
.
w,
W
.
W,

BLOCK 475 (39,0)

NN

NN
§\
\
\
§
\\

\

N

VA 144777 PA 316777

BLOCK
BLOCK @

{ e 20>z

A 312000

399

Pors 1 478 [0[0 7] 0] ¢ |

PLF A W ED ACF

Figure 7-20 Typical Memory Page

The memory segment illustrated in Figure 7-20 has the following at-
tributes:

epage length: 40 blocks

evirtual address range: 140000 — 144777

e physical address range: 312000 — 316777

191

PDP-11/45, PDP-11/55

e No trapped access has been made to this page.
e Nothing has been modified (i.e. written) in this page.
eread-only protection

eupward expansion

These attributes were determined according to the following scheme:

1.

Page address register (PAR6) and page descriptor register (PDR6)
were selected by the active page field (APF) of the virtual address
(VA). (Bits 15-13 of the VA = 68.)

. The initial address of the page was determined from the page ad-

dress field (PAF) of APR6 (312000 = 31208 blocks X 408 (3210)
words per block X 2 bytes per word).

Note that the PAR which contains the PAF constitutes what is often
referred to as a base register containing a base address or a relo-
cation register containing a relocation constant.

. The page length (478 + 1 = 4010 blocks) was determined from the

page length field (PLF) contained in page descriptor register PDR6.
Any attempts to reference beyond these 4010 blocks in this page
will cause a page length error, which will result in an abort, vectored
through kernel virtual address 250.

The physical addresses were constructed according to the scheme
illustrated in Figure 7-21.

. The access bit (A bit) of PDR6 indicates that no trapped access has

been made to this page (A bit = 0). When an illegal or trapped
reference, (i.e. a violation of the protection mode specified by the
access control field ACF for this page), or a trapped reference i.e.,
read, in this case, occurs, the A bit will be settoa 1.

The written bit (W bit) indicates that no locations in this page have
been modified. If an attempt is made to modify any location in this
particular page, an access control violation abort will occur. If this
page were involved in a disk swappirig or memory overlay scheme,
the W bit would be used to determine whether it had been modified
and thus required saving before it could be overlaid.

. This page is read-only protected; i.e. no locations in this page may

be modified. In addition, a memory management trap will occur
upon completion of a read access. The mode of protection was
specified by the access control field (ACF) of PDR6.

. The direction of expansion is upward (ED = 0). If more blocks are

required in this segment, they will be added by assigning blocks
with higher relative addresses.

192

PDP-11/45, PDP-11/55

Note that the various attributes which describe this page can all be
determined under software control. The parameters describing the
page are all loaded into the appropriate page address register (PAR)
and page descriptor register (PDR) under program control. In a nor-
mal application, it is assumed that the particular page which contains
these registers would be assigned to the control of a supervisory type
program operating in kernel mode.

Non-Consecutive Memory Pages

Although the correspondence between virtual addresses and
PAR/PDR pairs is such that higher VAs have higher PAR/PDREs, this
does not mean that higher virtual addresses necessarily correspond to
higher physical addresses. It is quite simple to set up the page ad-
dress fields (PAF) of the PARs in such a way that higher virtual ad-
dress blocks may be located in lower physical address blocks as illu-
strated in Figure 7-21.

VAOQ37777 PA 467777

VA 020000, PA 450000

VAOI7777 PA 560777

VA 0000 PA 541000

Figure 7‘;21 Non-Consecutive Memory Pages

Note that although a single memory page must consist of a block of
contiguous locations, memory pages as macro units do not have to be
located in consecutive physical address locations. It also should be
realized that the assignment of memory pages is not limited to conse-
cutive non-overlapping physical address locations.

193

PDP-11/45, PDP-11/55

Stack Memory Pages

When constructing PDP-11/55, 11/45 programs it is often desirable to
isolate all program variables from pure core (i.e. program instructions)
by placing them on a register indexed stack. These variables can then
be pushed or popped from the stack area as needed. Since all PDP-11
family stacks expand by adding locations with lower addresses, when
a memory page which contains stacked variables needs more room, it
must expand down, i.e., add blocks with lower relative addresses to
the current page. This mode of expansion is specified by setting the
expansion direction (ED) bit of the appropriate page descriptor regis-
ter (PDR) to a 1. Figure 7-22 illustrates a typical stack memory page.
This page will have the following parameters.

PARG: PAF = 3120
PDR6: PLF = 1758 or 12510 (12810-3)

ED =1
A=0or1
W=0or1

ACF = nnn (to be determined by programmer as the need dictates).
NOTE: The A, W bits will normally be set by hardware.

VA 157777 PA 33777
BLOCK 177g (127,0)

BLOCK 176g (1264q)
VA 157500 BLOCK 175g (125¢0) PA 331500

BLOCK
VA 140000 PA 312000

PARG \\ PAF
pore R PLF [A W RS0 AcF

Figure 7-22 Typical Stack Memory Page

In this case the stack begins 128 blocks above the relative origin of this
memory page and extends downward for a length of three blocks. A
page length error abort vectored through kernel virtual address 250
will be generated by the hardware when an attempt is made to
reference any location below the assigned area, i.e., when the blpck
number (BN) from the virtual address is less than the page length field
of the appropriate descriptor register.

194

I

PDP-11/45, PDP-11/55

TRANSPARENT OPERATION OF MEMORY MANAGEMENT

It should be clear at this point that in a multiprogramming application it
is possible for memory pages to be allocated in such a way that a
particular program seems to have a complete 32K basic PDP-11/55,
11/45 memory configuration. Using relocation, a kernel mode supervi-
sory-type program can easily perform all memory management tasks
in a manner entirely transparent to a supervisor or user mode pro-
gram. In effect, a PDP-11/55, 11/45 system can utilize its resources to
provide maximum throughput and response to a variety of users.

MEMORY MANAGEMENT UNIT — REGISTER MAP

REGISTER ADDRESS
Status Register #0(SRO0) 777572
Status Register #1(SR1) 777574
Status Register #2(SR2) 777576
Status Register #3(SR3) 772516
User | Space Descriptor Register (UISDRO) 777600
User | Space Descriptor Register (UISDR7) 777616
User D Space Descriptor Register (UDSDRO) 777620
User D Space Descriptor Register (UDSDR?7) 777636
User | Space Address Register (UISARO) 777640
User | Space Address Register (UISAR7) 777656
User D Space Address Register (UDSARO) 777660
User D Space Address Register (UDSAR7) 777676

195

PDP-11/45, PDP-11/55

REGISTER :
Supervisor | Space Descriptor Register (SISDRO)

Supervisor | Space Descriptor Register (SISDR7)

Supervisor D Space Descriptor Register (SDSDRO)
Supervisor D Space Descriptor Register (SDSDR7)

Supervisor | Space Address Register (SISARO)

Supervisor | Space Address Register (SISAR7)

196

ADDRESS
772200

772216

772226

772236
772240

772256

| —

197

DIAG CNTRL START
i

198

CHAPTER 8
PDP-11/60

FEATURES

The PDP-11/60 is at the top of the mid-range PDP-11 processors, and
is the most powerful processor described in this handbook. It is de-
signed for both real-time applications and multi-user timesharing ap-
plications, offering a combination of features normally found only in
larger computers.

The unique combination of UNIBUS-interfaced MOS or core memory
and processor cache memory allows I/0 transfers to memory to occur
simultaneously with CPU accesses from cache memory. The
cache/UNIBUS memory design provides a system-oriented computer
that can handle both single and multi-user systems at high speed.

Since the cache memory is an integral part of the processor, the stan-
dard PDP-11 operations of the UNIBUS, 1/0 devices, and memory are
unaffected.

Features of the PDP-11/60 that are explained in detail in this chapter
include:

ecache memory system
ememory management
ekeypad, numeric programmers’ display console

esystem integral floating point instructions and an optional parallel
floating point processor

einternal extended instruction set (EIS)

efour lewels of priority interrupt

emaintenance features

ereliability and maintainability (R.A.M.P.)

euser microprograming capability (described in Chapter 9)

PDP-11/60 MEMORY

Memory for the PDP-11/60 is a combination of a 2048 byte high-speed
bipolar cache memory and up to 248K bytes main memory which can
be either MOS or core memory. Cache memory provides for rapid
execution of instructions, while the main memory provides cost-effec-
tive bulk storage. '

199

PDP-11/60

walsAs 09/1 L-dAd paudwis L-g 8inbi4

YOLVNIWYEL

IVAINGD |

HIvd 1O¥INOD

|
| |
| any
[Hivd Viva |
| ﬁ _
| |
|| Nawaovnww ||
| AYOWAW _
| H | SALAS N9SZ
$3dIAIQ $3D1A3Q saixg svor | | (39015 ONINDVE)
o/1 o/1 | AJOWIW | AOW3W NIVW
| 3HOVD
_ _
| |
AF SNEINN_O/1 | " I0¥INOD_ ANOWAW
|

YOLVYNIWYIL
® ¥3avOl
dv¥151008

200

s

PDP-11/60

Cache Memory

Cache memory is a small, high-speed memory that maintains a copy
of previously selected portions of main memory for faster access of
instructions and data. The PDP-11/60 computer system appears to be
a conventional PDP-11 system with UNIBUS-connected memory, ex-
cept that the execution of programs is noticeably faster. The only
difference is in system timing; there are no changes in programming.

Cache memory is physically located within the processor and is a part
both of the processor and of main memory, as shown in Figure 8-2.
The high-speed bipolar cache memory is synchronized with the pro-
cessor and eliminates long bus transmission and access times associ-
ated with main memory. Allocation mechanisms in the PDP-11/60
processor update the cache memory automatically and dynamically
and extend the speed effect of cache across the entire main memory.

TERMINATOR

1/0
DEVICE

! |
DATA PATH MEMORY | CACHE | A
| AND oo
| |cONTROL STORE MANAGEMENT ™1 MEMORY | MEMORY
| I

-
|
|
|

| |

PROCESSOR |
iy —_)————— 1 |
_

UNIBUS

BOOTSTRAP
LOADER &
TERMINATOR

Figure 8-2 Cache Memory System Relationships

All instructions are stored in main memory; a copy of some of this
information is stored in the cache. If most of the time the needed data
is in the fast cache memory, the program will execute quickly, slowing
down only for access to main memory. The cache system loads cache
memory automatically and dynamically, in a way that gives a high
probability that desired data will be in the fast memory.

The principle of program locality states that programs have a
tendency to make most accesses in the neighborhood of locations

201

PDP-11/60

accessed in the recent past. Programs typically execute instructions in
straight lines or small loops, with future accesses likely to be within a
few words of the last reference. Stacks grow and shrink from one end,
with the next few accesses near the current bottom. Data elements are
often scanned sequentially. Cache makes effective use of this pro-
gram behavior by keeping copies of recently used words.

A cache system offers faster system speed for the cost of a small
quantity of fast memory plus associated logic, while main memory can
be implemented economically. An increase in system speed depends
on the size and organization of cache, not on the type or speed of main
memory. You receive a substantial speed improvement for a modest
cost, and there are no programming changes. Although the exact
speed improvement depends on the particular program, a judicious
choice of architecture and algorithm will produce good results for all
programs.

The fundamental concern is instruction execution speed. This is af-
fected by the speed of fast and slow memory and by the percentage of
time that memory references will find the data within the cache, allow-
ing faster execution. When the needed data is found in the cache, a hit
is said to occur. A miss occurs when the data is not in the cache.

The cache system within the 11/60 processor provides an additional
advantage of lower UNIBUS utilization by the processor, since read
memory references that are hits do not access the UNIBUS. Conse-
quently, the UNIBUS is more available for 1/0 device-to-memory
transfers.

PDP-11/60 Cache Implementation
Cache memory organization can be implemented in different ways.
The PDP-11/60 cache implementation is summarized in Table 8-1.

Table 8-1 PDP-11/60 Cache Implementation
CACHE CHARACTERISTICS PDP-11/60 IMPLEMENTATION

Address mechanism Direct mapping
Block size Block size one
Set size Set size one
Allocation mechanism Write through
Replacement algorithm Not applicable

with set size of one

Direct mapping address mechanism This type of mechanism allows
each word from main memory only one possible location in cache and
consequently requires only one address comparison, as opposed to
the fully associative cache, for example, which requires many address
comparisons.

202

Al

PDP-11/60

Block size The PDP-11/60 has a block size of one, which means that
every time a fetch to main memory occurs, only one word is fetched.
One word is allocated to cache in the event of a miss.

Set size The PDP-11/60 has a set size of one, which means that there
is a unique location in cache for any given word from main memory.
Consequently, if a miss occurs, only one cache location is available for
the data to be written into.

Write through The PDP-11/60 method of handling stale data in main
memory is write through. In the write through method, the data stored
in cache is immediately copied into main memory; main memory al-
ways has a valid copy of all data.

Cache Memory Data Format

Figure 8-3 shows the basic data format of the PDP-11/60 cache mem-
ory. The 2048 bytes of memory data are organized in 1024 words of 27
bits each. These 1024 words are index positions and are organized
into a direct mapping cache. Bits 10 through 1 of the physical address
access these index positions upon a memory reference. A complete
address match requires a comparison of bits 17 throught 11 of the
physical address with the address information contained in the tag
field of the index position. The tag field contains seven address bits, a
valid bit, and a parity bit. The data field of the index position consists of
two 8-bit bytes of data, each with byte parity.

27 BITS
TAG - ofe DATA
[7 1 8 1 8 0
I
! ; |
i //\ _/—\JI
|
PHYSICAL ADDRESS ! L — = b
A J lf\ _,-//\/' :
CACHE INDEX
T FOSITIONS
. |
|
L— |
[
|
v
P | v |ADDRESS | P | BYTE | P BYTE 102319
LEGEND:
P= PARITY BIT
V= VALID BIT

Figure 8-3 Cache Memory Data Format

203

PDP-11/60

Physical and Cache Address

Since the physical address space is 128K words, an address mapping
technique is necessary to allow the 1K-word cache to be mapped
directly onto any one of the 128 blocks. The physical address is divid-
ed into a tag field, an index field, and a byte field, as shown in Figure 8-
4.

17 n 10 1 0 BIT POSITION

CACHE FIELD
TAG INDEX ,BVTEJ NAME

Figure 8-4 Physical Address Format

The byte field selects the high or low byte. The index field determines
which cache index position is used to store the copy of the data. This
10-bit index field specifies one of 1024 index values and is the address
of a 27-bit word in the cache (see Figure 8-3).

For each of the index words, however, the remaining bits of the physial
address can specify one of the 128 blocks. These bits constitute the
tag field and are stored with the memory data in the cache index
location. They prevent ambiguous determination of a specific physical
address by uniquely specifying one of the 128 1K blocks.

Addressing cache then consists of applying the lower part of a physi-
cal address <10:1> against the 1K cache memory matrix and check-
ing the higher order physcial address <17:11> against the tag field of
the index word obtained. If the tag field in the address matches the tag
field stored with the data in the index word, the word obtained is the
word specified by the physical address. This is designated a hit. If the
word is not the same (the fields do not match), it is designated as a
miss. On a processor write, a main memory reference occurs and the
new data and tag portion of its physical address will be stored in the
still accessed index position. This allocation keeps current data in the
cache for processor use.

Processor Memory Reference

Cache memory within the PDP-11/60 operates synchronously with
processor memory references. Address information from the
processor is translated to physical addresses by the memory manage-
ment unit (if enabled).

The processor always looks for data in the fast cache memory first.

If the data is in the cache memory, a hit occurs, and there is no change
to cache or main memory. The UNIBUS is not accessed and instruc-

204

|-

PDP-11/60

tion proceeds at the fastest rate. If a miss occurs, the data and tag of a
cache location are changed to correspond to the information obtained
in a bus cycle to a main memory location (allocating cache). During a
write into memory, if a hit occurs, both main memory and cache are
updated. If a miss occurs during a word write memory reference, main
memory is written, and the tag and data of the cache location are
changed to correspond to the main memory location (allocating
cache). For a write byte into memory, the process is similar except that
cache is not allocated upon a miss.

In a typical program, writes occur on only 10% of memory references,
as compared to 90% for reads. Upon these reads, hits will average
77% to 92%.

G =

1/0
DEVICES

MAIN
MEMORY

DATA PATH

AND
CONTROL PATH
PROCESSOR -I

<
m
<
e}
)
=

Figure 8-5 Cache Adressing Scheme

205

PDP-11/60
Table 8-2 Hit or Miss Operations

Processor What Happens In What Happens In
Operation Cache Main Memory

Read (word, byte)

Hit No change No change

Miss Allocated* No change
Write (word)

Hit Updated** Written Into

Miss Allocated* Written Into
Write (byte)

Hit Updated** Written Into

Miss No change Written Into
NPR What Happens In What Happen In
Operations Cache Main Memory

Read (word)

Hit (not checked) No change No change

Miss (not checked) No change No change
Write (word or byte)

Hit Invalidated*** Written Into

Miss No change Written Into

* Allocated — The data and tag of the cache location are changed to corres-
pond to the main memory location.

*k

Updated — The data in cache is changed to correspond to the data in main
memory.

Tkh

Invalidated — Valid bit in the cache word is cleared to show that the data is
stale and does not correspond to the data in main memory.

NPR Memory References

Exterior UNIBUS memory references (NPRs) that alter memory (write
into memory) are monitored by the cache control logic. Physical ad-
dress bits 1-10 are used as an index to access the corresponding
index position in cache. If the tag bits of the physical address match
the address bits in the cache tag field, the index position is invalidated
by clearing the valid bit in the tag field to 0. If the tag bits of the

206

T

PDP-11/60

physical address do not match the address bits in the cache tag field,
no change occurs (see Table 8-2).

The 1/0 monitoring is synchronized by the processor logic to maxim-
ize overlap of processor operations and to have a negligible effect on
1/0 transfer rates.

Power Failure

When power is first applied, the valid bit is cleared in all cache index
values prior to any memory reference. First memory references are to
the main memory. If power is lost, cache data will become invalid, but
main memory, if non-volatile core, will have a correct copy of the data.
If the machine contains MOS memory, with battery backup, a power
fail will operate just as with core, provided the battery is functioning
properly. If the battery is depleted, defective, or no battery backup is
present, the machine will boot upon an automatic restart in panel lock
mode. Otherwise, restart will be according to console switch setting.

Registers

The registers described in this section provide information about pari-
ty errors, memory status, and processor status. These hardware regis-
ters have program addresses in the top 4K words of physical address
space (peripheral page).

Register Address
Memory System Error 777744
Control 777746
Hit/Miss 777752

Some bit positions of the registers are not used (not implemented with
hardware). These bits are always read as zeros by the program. The
memory system error register is assembled from data within various
error log registers and has certain restrictions. These registers are all
accessed by processor program execution or console actions.

[‘ NOT USED ‘ l l I NOT USED

ABORT
HIGH BYTE PARITY ERROR
LO BYTE'PARITY ERROR
TAG PARITY ERROR

Figure 8-6 Memory System Register 777744

207

PDP-11/60

Bit Name
15 CPU ABORT
Function

Set if an error occurs that caused the processor to abort an operation.
The errors that cause this action are: UNIBUS memory parity error;
cache parity error if the cache parity error abort bit of the cache
control register is set; and user control store parity error.

Bit Name

14-8 Not Used

Bit Name

7 HIBYTE

6 LOBYTE

5 TAG PARITY
Function

These bits are set for cache parity errors. The bits are set for parity
errors in the high byte of data, the low byte of data, or the tag field
(which includes the valid bit), if the cycle is aborted. If the cycle is not
aborted (cache parity error, abort bit of cache control register is
cleared and backing store references occur), all the bits (7, 6, 5) are
set upon an error to aid compatibility with the PDP-11/70 system
software. Then if a cache parity error occurs, the disable traps bit of
the cache control register should be set to prevent the operating sys-
tem from looping in the parity handler.

Bit Name
4-0 Not Used

In the PDP-11/60, the memory system error register is assembled
from error log information and is subject to the restrictions on the
error log. The error log is stored, upon an error, in scratch-pad regis-
ters used for floating point constants. If error information is to be
obtained, floating point instructions cannot be executed between the
parity error trap (location 114) and register access. The contents of
this register are undefined if the last trap is not to location 114.

15 8 7 6 S 4 3 2 1 0
NOT
NOT USED | [‘NOT USED ’ ' ‘USEDI J
CACHE PARITY ERROR ABORT ————T]
WRITE WRONG PARITY
FORCE MISS)
FORCE MISS O

DISABLE TRAPS

Figure 8-7 Cache Control Register 777746

208

PDP-11/60

Bit Name

15-8 Not Used

Bit Name

7 Cache Parity Error Abort
Function

This bit is cleared on power-up. It is set only during maintenance
diagnostics and will cause an abort when a cache parity error occurs.

Bit Name
6 Write Wrong Parity
Function

This bit is cleared 6n power up. It is used during maintenance diag-
nostics and, if set, will write wrong parity in the tag, high byte, and low
byte when cache is updated.

Bit Name

5-4 Not Used
Bit Name

3-2 Force Miss
Function

Setting these bits forces misses on reads to the cache and on attempts
to invalidate the cache on NPR DATO references. Bit 3 forces misses
on words 512 to 1023. Bit 2 forces misses on words 0 to 511. Setting
both bits forces all cycles to main memory (degraded operation).

Bit Name

1 Not Used

Bit Name

0 Disable Traps
Function

Set by the cache parity error handler when it is desired to disable traps
occurring as a result of non-fatal cache errors.

NOT USED -~ FLOW

Figure 8-8 Hit/Miss Register 777752

209

PDP-11/60

This register indicates whether the six most recent references by the
processor were hits or misses. A one (1) indicates a read hit; a zero (0)
indicates a read miss or a write. The lower numbered bits are for the
more recent cycles.

All the bits are read only. The bits are undetermined after a power up.
They are not affected by a console start clear.

MEMORY MANAGEMENT ON THE PDP-11/60

Unlike the memory management units discussed in the PDP-11/34,

11/45, and 11/55 sections, the memory management (KT11) logic is

an integral part of the PDP-11/60 cache memory module. It performs

two basic functions:

1. The relocation of virtual memory addresses to physical memory
addresses; i.e., the transformation from a symbolic to an absolute
addressing scheme

2. Protection of active user programs against unauthorized access

Because the KT11, when enabled, relocates all addresses automati-
cally, the 11/60 may be considered to be operating in a virtual address
space. This means that, regardless of where a program is loaded into
physical memory, it will not have to be re-linked — it always appears to
be at the same virtual location in memory.

Memory Relocation

The primary memory management function is to perform memory
relocation and provide expanded memory addressing capability for
systems with more than 28K of physical memory. The KT11 uses two
sets of page address registers to relocate virtual addresses to physical
addresses in memory. These sets are used as hardware relocation
registers that permit several user programs, each starting at virtual
address 0, to reside in physical memory simultaneously.

Program Relocation

The page address registers are used to determine the starting address
of each relocated program in physical memory. Figure 8-9 shows a
simplified example of the relocation concept.

In Figure 8-9, Program A starting address 0 is relocated by a constant
to provide physical address 6400,.

If the next processor virtual address is 2, the relocation constant will
then cause physical address 6402,, which is the second item of Pro-
gram A, to be accessed. When Program B is running, the relocation
constant is changed to 100000,. Then Program B virtual addresses
starting at 0 are relocated to access physical addresses starting at

210

il

PDP-11/60

100000,. Using the active page address registers to provide relocation
eliminates the need to re-link a program each time it is loaded into a
different physical memory location. The program always appears to
start at the same address.

In PDP-11/60 systems, a program is relocated in pages. A page can
consist of from 1 to 128 blocks. Each block is 32 words in length. Thus,
the maximum length of a page is 4096 (128 X 32) words. Using all of
the eight available active page registers in a set, a maximum program
length of 32,768 words can be accommodated. Each of the eight
pages can be relocated anywhere in the physical memory, as long as
each relocated page begins on a boundary that is a multiple of 32
words. However, for pages that are smaller than 4K words, only the
memory actually allocated to the page may be accessed.

The relocation example shown in Figure 8-9 illustrates several points

about memory relocation. These are:

e Although the program appears to the processor to be in contiguous
address space, the 32K-word virtual address space is actually scat-
tered through several separate areas of phsical memory. As long as
the total available physical memory space is adequate, a program
can be loaded. The physical memory space need not be contiguous.

ePages may be relocated to higher or lower physical addresses with
respect to their virtual address ranges. In the example in Figure 8-9,
page 1 is relocated to a higher range of physical addresses, page 4 is
relocated to a lower range, and page 3 is not relocated at all (even
though its relocation constant is non-zero).

e All of the pages shown in the example start on 32-word boundaries.

eEach page is relocated independently. There is no reason why two or
more pages could not be relocated to the same physical memory
space. Using more than one page address register in the set to
access the same space would be one way of providing different
memory access rights to the same data, depending upon which part
of a program was referencing that data. In the example shown in
Figure 8-9, note the relocation constant assigned to pages 4 and 6.
As a result, virtual addresses within both address ranges access the
same physical addresses in memory, using separate page address
registers.

Virtual to Physical Address Conversion

With the KT11 memory management logic as a standard component
of the 11/60 cache module, the address output from the data path
module cannot be considered as the direct physical address of a
memory location. Instead it is viewed as a 16-bit virtual address that

211

PDP-11/60 PROCESSOR

VIRTUAL
ADDRESS

(vA)=0

v

p)

PDP-11/60

KT11 OPTION

RELOCATION
CONSTANT
A=0064
8=1000

PHYSICAL ADDRESS

PHYSICAL MEMORY

——
———————)

PROGRAM B
100000

T
ey

PROGRAM A

006400

000000

Figure 8-9 Simplified Memory Relocation Example

contains information to be used by the KT11 to construct a 18-bit
physical address. (Bit 0 is not used in the physical address configura-

tion to cache.)

PROCESSOR
VIRTUAL ADDRESS
RANGES

180000-177776

140000-157776

120000-137776

100000 - 117776
060000 - 077776

040000 - 057776
020000 - 037776
000000 - 017776

Figure 8-10 Relocation of a 32K-Word Program Into 124K-Word
Physical Memory

KT11

PAGE| RELOCATION
NO. CONSTANT
7 1500XX
6 0200XxX
5 1000XxX
4 0200xX
3 0600XxX
2 2500XxX
1 3200Xx
o] 4000XX

PDP-11/60 MAIN MEMORY

The 11/60 is available with MOS and core configurations. The use of
MOS memory provides the following advantages:

e|ower power consumption

212

PHYSICAL MEMORY
SPACE

400000-417776

320000 -337776

250000 - 267776

150000 - 167776

100000 -117776

060000 - 077776

020000 - 037776

e

PDP-11/60

egreater packaging density
efaster cycle time

emore reliable systems
elower maintenance costs

Mos Memory with ECC

ECC (error correcting code) is a technique for checking the contents
of memory to detect errors and correct them before sending them to
the processor. The process of checking is accomplished by combining
the bits in a number of unique combinations so that parity, or syn-
drome, bits are generated for each unique combination and stored
along with the data bits in the same word as the data. The memory
word length is extended to store these unique bits. When memory is
read, the data word is again checked, syndrome bits are regenerated
and compared with the syndrome bits stored with the word. If they
match, the word is sent on to the processor. If they do not match, an
error exists and the mismatch of the syndrome bits determines which
data bit is in error. The bit in error is then corrected and sent on to the
processor. The error correcting code which is employed in MOS
memory will detect and correct single bit errors in a word, as well as
detect double bit errors in a word. Where a double bit error is detect-
ed, the processor is notified, as happens with a parity error.

ECC provides the maximum system benefits when used in a storage
system which fails in a random single bit mode rather than in blocks or
large segments. Single bit error (or failure) is the predominant failure
mode for MOS.

PARITY

Parity is used extensively in the PDP-11/60 to insure the integrity of

data handling and to enhance the reliability of system operation.

e UNIBUS memory parity is isolated to 1K blocks. When a memory
parity error occurs on the UNIBUS, examination of the memory parity
register (in memory) will localize the error to the nearest 1K block.

eCache parity has parity bits associated with the tag field (including
valid bit), high byte of the data word, and low byte of the data word.

eThere is a parity bit for each 16-bit segment of the 48-bit Writable
Control Store (WCS) word.

Software routines are used to log the occurrence of parity errors, to
handle recovery from errors, and to provide information on system
reliability and performance. Diagnostic software uses parity to isolate
errors for rapid repair.

213

PDP-11/60

Error Response
The PDP-11/60 has two basic responses to parity errors:

1. The operation is aborted, an error log is generated concerning
conditions at the point of error, and a macro trap is generated
immediately.

2. The operation continues, an error log cannot be generated, and a
macro trap occurs at the end of the instruction. The macro trap can
be suppressed for cache errors if the disable traps bit of the cache
control register is set.

The first response (abort) is necessary for UNIBUS memory parity
errors, non-existent address, time-out, and writable control store pari-
ty errors. In these instances, there is no way to continue or to recon-
struct operation. For cache parity errors, the abort mode with its error
log can be used for diagnostic purposes. This mode is enabled by
setting the cache parity error abort bit of the cache control register.
Double errors within MOS memory will result in memory cycle abort
with an immediate macro trap. The error correcting logic will correct
the error and will set the single error bit in the MOS memory control
and status registers. The register can be analyzed by system software
to note degradation of memory operation. Continued operation de-
pends upon the ability to obtain correct information. For cache parity
errors, a reference to memory can provide this information. This refer-
ence occurs automatically if the cache parity error abort bit of the
cache control register is not set. Certain bits of the memory system
error register are set for compatibility with the PDP-11/70, and a
macro trap through location 114 (parity error-trap) occurs at instruc-
tion end. For error correcting codes in MOS memory, single errors are
corrected in the memory to provide correct information.

The PDP-11/60 has been designed to allow recovery from cache pari-
ty errors, and to allow operation in a degraded mode if a section of the
memory system is not operating properly. This type of operation is
possible under program control by using the built-in control registers.

If data found in a location in cache does not have correct parity, a
memory reference can automatically occur to allow program execu-
tion to proceed. If a number of locations in cache fail, it is possible to
turn off a part or all of cache using the force miss bits of the cache
control register. Part or all of the read data is brought from the cache;
operation of programs will be slower, but the system will yield correct
results. A decision to force misses in cache at the system level should
be considered irrevocable until the system is restarted or diagnostic
corrections have occurred. Restart requires an update of the full 1024-
word cache during the absence of I/0 device intervention.

214

PDP-11/60

If the macro trap after an automatic memory reference takes too much
system time, it can be suppressed by the disable traps bit of the cache
control register. This disable is also used in the service routine for the
cache error to prevent endless traps.

If part of the main memory is not working, the memory management
unit can be used to map around the maifunctioning memory. Indica-
tion of main memory failure comes from the UNIBUS memory parity
error bit for single core memory failures and double MOS memory
errors.

The error correcting logic will correct the error and will set the single
error bit in the MOS memory control and status register. No direct
macro program indication of an error is made. The control and status
register of the MOS memory does contain a single error bit that is set
and remains set until cleared by program action. This register also
contains a disable correction code bit to provide diagnostic determi-
nation of the exact error.

Cache Parity Error and Cache Control Register (CCR)

The system response to cache parity errors depends on the state of
the cache control register bits CRR<07> (Cache Parity Error Abort)
and CCR<00> (Disable Traps).

In most operations, CCR<07> and CCR<00> are zero. On a cache
parity error, a trap will occur at the end of the current instruction. In
this mode, where a cache parity error occurs, an internal control bit is
set that will cause a trap through location 114, and a memory
reference occurs to obtain correct data. In the error handling routine,
the CPU abort bit (bit 15) in the memory system error register is
examined. It will be zero, indicating that the instruction was not abort-
ed. Bits 7, 6, and 5 (high byte, low byte and tag parity) will all be set for
compatibility with PDP-11/70 software.

In certain situations (the parity handler routine, for example), it is
desirable to disable traps because of cache parity errors. The disable
is done by making CCR<07> equal to zero and CCR<00> equal to
one. In this mode, a cache parity error results in a memory reference
and no macro trap occurs.

If more detailed information about a cache parity error is required, as
in a diagnostic, the current instruction is aborted. This mode occurs
with CCR<07> set to one. When the error occurs, the memory refer-
ence cycle is aborted, an error log is constructed, and a macro trap
through location 114 occurs. The information in the error log includes
exact parity error location to the address and byte level. When the
memory system error register is examined, it will contain a value of
one, indicating that an instruction was aborted.

215

PDP-11/60

‘¥ 1 uoneoso| ybnouuy deuy ‘6oj 1o1ud

1ONJISU0D ‘uolelado Jualing 1oqy Jo443 1od 38 1 1 L
‘v1 1 uoieoso| ybnoayy deuy ‘60j Jouie

1oN1Isuod ‘uone.tado Jualind Joqy Joui3 sed jog 1 0 L
711 uoijeso|

o} delJ) ou ‘saoualiaal AlIows TSNV 0 I 0
‘PuUd uoioNIIsul je 1 | UoNeoso|

ybnouyy deu) ‘seousiajel AIOWL FETSN TV 0 0 0

<G0'90°20>3SN <GL>3ASN <00>400 <.0>499

uooy walsAs 10143 waysAg Alowapy joJjuo) ayoen

Red syoe) uodn suonoy ¢-g ajqel

‘suojjesado Ayted sayoed sazuewwins g-g a|qe]

216

B [

PDP-11/60

PDP-11/60 PROGRAMMERS’ CONSOLE

The Programmers’ Console, KY11-P, is designed for both computer
operation and maintenance. The console maintenance function sup-
plements other PDP-11/60 features such as a single clock, micro-
break, processor error log, error status registers, and device-specific
macrodiagnostics. Microdiagnostics are also available with the micro-
programming options.

The PDP-11/60 console allows direct control of the computer system.
It contains a power switch that is used as the master switch for the
system. The console is used for starting, stopping, resetting, and de-
bugging programs. Lights, switches, and a numeric display provide for
monitoring operation, system control, and maintenance. Debugging
and detailed tracing of operations can be accomplished by executing
single instructions. Contents of all memory locations and internal
registers can be examined and data entered manually from the con-
sole control switches and numeric keypad.

Power-up

Power is turned on by turning the rotary switch to POWER. What
occurs after power-up depends on the position of the
BOOT/RUN/HALT slide switch prior to the power-up. The slide switch
allows three modes of power-up: BOOT, RUN, and HALT.

BOOT: Position allows the system to boot directly from the
bootstrap loader (M9301-YX). The boot procedure is
accomplished by selecting the device to be boot-
strapped by the microswitches, placing the slide
switch in BOOT position and turning the rotary
switch to POWER.

RUN: Position allows automatic restart on power-fail reco-
very. Power-up is to location 24 for automatic restart
and occurs in all except MOS memory systems
where the battery is depleted or absent; in that case,
a boot occurs.

HALT: Position allows the use of the console keypad after
power-up.

NOTE: Toinitialize the computer, depress the
HALT/SI key while holding the START key down.
You should have the slide switch in the desired posi-
tion, as it is examined during the initialization. This
procedure can be used to clear a hung bus without
turning off power.

217

PDP-11/60

Starting and Stopping

If you wish to start a program from a given address, turn the power on
after placing the slide switch in HALT position. The keypad is active
and the desired address can be loaded into the temporary switch
register (and also in the display) by pressing the numeric switches.
After checking the desired address as displayed, press the LADRS
key. Then press START, holding CNTRL key down. This starts the
program. The CONSOLE light goes out and the RUN light comes on;
the system is now in run mode. The only keys which are active are the
numerics, DADRS, D/LSWR, and HALT/SI.

To terminate the execution of a program, depress the HALT/SI key.
This stops the program, the CONSOLE light comes on and the RUN
light goes out. The system is in console mode and all the keys in the
keypad are active. The display contains the PC. In this mode of opera-
tion, a single instruction is executed each time the HALT/SI key is
depressed.

Console Indicators and Switches

The PDP-11/60 Programmers’ Console provides the following facili-
ties:

@ 6-digit octal display for address and data indication

e Processor state lights:
RUN
PROC (Processor)
USER
CONSOLE
BATT (Battery)

eBOOT/RUN/HALT slide switch for power-up action

e 5-position rotary switch for selection of machine status
STD BY
POWER
LOCK (panel lock)
R1 (Remote 1)
R2 (Remote 2)

e Keypad switches (four rows of five switches each, noted below)
DADRS (Display address)
7 (Numeric)
EXAM (Examine)
DEP (Deposit)
HALT/SI (Halt/Single Instruction)
(L)ADRS (Load Address)
4 (Numeric)

218

T

o

PDP-11/60

5 (Numeric)

6 (Numeric)

CONT (Continue)
(D)SWR, (L)SWR (Display Switch Register, Load Switch Register)
1 (Numeric)

2 (Numeric)

3 (Numeric)

BOOT (Bootstrap)
MAINT (Maintenance)
0 (Numeric)

DIAG (Diagnostic)
CNTRL (Control)
START

NOTE: The CNTRL interlocks the action of other
keys. The functions labeled in blue on the control
panel cause irrevocable change in machine status
and therefore are interlocked with CNTRL. CNTRL
must be depressed when the other key is activated
for action to occur.

Console Internal Registers

The console has the following four internal registers (in the A and B
Scratchpads) for its own exclusive use. Each is 16 bits wide and has
the functions noted below:

CNSL.CNTL, Console Control, is a 16-bit register containing various
control bits used in the console microcode. It also contains the upper
two bits of the temporary switch register, the console switch register,
and console address register.

CNSL.TMPSW, Console Temporary Switch Register, is 18 bits wide
and is made up of the CNSL.TMPSW register and two bits in the
control register. The temporary switch register is used as a buffer to
collect the numerics and is also used for display.

CNSL.ADRS, Console Address Register, is also 18 bits wide and is
composed of the CNSL.CNTL to allow 18-bit physical addresses.

CNSL.SW, Console Switch Register, is also 18 bits wide and is com-
posed of the CNSL.SW register and two bits in the CNSL.CNTL regis-
ter. This register has a UNIBUS address of 777570 and is a read-only
register. If a write is attempted at this address, the data will be written
in the console address register and then displayed on the console if
the DLOCK bit in the CNSL.CNTL is not set. This bit is cleared in
(D)ADRS and START functions and set in every other function.

219

PDP-11/60

(D)ADRS can be used to unlock the display and provide a positive
indication-of movements by the program to 777570.

Switches and Indicators

Octal Display

The octal display is a 6-digit, 7-segment display used to display ad-
dress or data information. The display allows 18 bits (octally coded) to
be displayed.

Processor State Lights

RUN — If illuminated, indicates that the processor is executing in-
structions. The light will not remain illuminated during an extended
WAIT instruction.

PROC — If illuminated, indicates that the processor is the master
device and has control of the UNIBUS.

USER — If illuminated, indicates that the processor is in user mode
and certain restrictions on instruction operation and Processor Status
word (PS) loading exist.

CONSOLE — If illuminated, indicates that the processor is in console
mode and is under control of the console keypad switches (manual
operation).

BATT — Battery monitor indicator. This indicator will function only in
machines containing the battery backup options and has the following
four states:

OFF — Indicates either no battery present, or battery depletion, if
battery is present.

ON (Continuous) — Indicates that battery is present and is
charged.

Flashing (Slow) — Indicates battery is charging.

Flashing (Fast) — Indicates loss of power, and also that battery is
discharging while maintaining MOS memory contents.

BOOT/RUN/HALT Slide Switch

Power-up action is determined by this switch position, in conjuction
with PANEL LOCK status. If the rotary switch is in LOCK position
(deactivating all keypad functions), inadvertent operation of the slide
switch has no effect. Upon power-up, the slide switch is treated as if it
were in the RUN position, regardless of its physical position. If the
battery is depleted for a MOS memory system, RUN is altered to a
BOOT action.

If the console is not in LOCK position, and a power fail occurs, three
choices of recovery (BOOT, RUN, and HALT) are available.

220

e

PDP-11/60

BOOT — Power-up to the M9301 bootstrap terminator.

RUN — Power-up to location 24, which contains the power-up vector.
Note that this action occurs independent of battery status on a MOS
memory system.

HALT — Power-up to the console. The CONSOLE light is illuminated
and the console keypad switches are active.

Rotary Switch
STD BY — Removes DC power from processor and core memory
(MOS memory battery charger is still on).

POWER — Applies power to all units. All console controls are opera-
ble in console mode.

LOCK — Deactivates all keypad functions. With power switch in LOCK
position, the position of the BOOT/RUN/HALT slide switch has no
effect when power-up occurs; power-up is to RUN, unless a battery
depletion causes BOOT upon a MOS memory system.

R1 — Local control is deactivated to allow operation from a remote
console. The octal display on the console will be blanked.

R2 — Console action is the same as R1.

Keypad Switches

The keypad contains twenty switches which are priority-encoded into
a unique 5-bit code. Simultaneous operation of the keys will allow the
operation of the switch with the higher priority. The switches are listed
in order of their priorities, with the highest priority described first.

0-7 NUMERICS — Activation of any of the numeric keys causes the
binary value of that key to be entered into the low-order three bits of
the temporary switch register. The previous contents are left-shifted
three bits. Each 3-bit binary value is displayed in octal representation
for each additional numeric depressed; the temporary switch register
(one of four internal registers) is left-shifted three bits; and the octal
display is left-shifted one digit. Consequently, a 6-digit octal number is
generated as octal digits are entered from the right and left-shifted.
Operation of the numerics occurs in both console mode and run
mode.

NOTE: The CNTRL (Control) key is used in con-
junction with some keys to prevent accidental opera-
tion of certain functions. When these are used, the
CNTRL key must be depressed.

Those keys which are interlocked with the CNTRL
key are indicated with an asterisk.

221

PDP-11/60

HALT/SI (Halt/Single Instruction) — Depressing this switch while the
processor is in run mode halts the processor between instructions,
after outstanding trap sequences, and before bus requests. The pro-
cessor is now in console mode and the CONSOLE indicator is lighted.
The octal display indicates the program counter for both HALT and Sl
functions. Depressing the HALT/SI switch now causes a single instruc-
tion to be executed.

To initialize the system without a program start, it is necessary to
depress the HALT/SI key while holding the START switch down.

NOTE: The PDP-11/60 differs from other PDP-11
processorsregarding thesingle instruction step
function. An operator cannot simply load an address
and immediately start single-stepping. To start from
an arbitrary address, the PC must be loaded using
the maintenance key function; one can then single-
step by pressing the HALT/SI switch.

(D)SWR, *(L)SWR (Display Switch Register, Load Switch Register) —
Displays the contents of the console address register in both console
and run modes. If this switch is depressed while the CNTRL switch is
held, the contents of the temporary switch register are loaded into the
console switch register. The contents of the console switch register
are displayed. Operative in both console and run modes.

(D)ADRS — Displays the contents of the console address register and
clears the display lock bit, thus enabling the program movements to
777570. Operation occurs in both console and’run modes.

Console Mode Functions

Console operations are word-ordered operations. If an odd bus ad-
dress (bit 00 enabled) is used, the odd address is stored in the console
address register (CAR). Examine or deposit operations in this address
will be treated as word operations (bit 00 ignored).

An EXAM or a DEP operation that references a non-existent address
causes the machine to display the console address with all the decimal
points lighted. Time-out trap sequences to non-existent addresses will
not be activated.

NOTE: The following switches are active only in
console mode.

(L)ADRS (Load Address) — Depressing this switch transfers the con-
tents of the temporary switch register to the console address register

222

—

PDP-11/60

to be used in subsequent DEP or EXAM operations. The contents of
the console address register are displayed in the octal display and all
decimal points are lighted.

EXAM (Examine) — Depressing this key accesses the UNIBUS ad-
dress specified in the console address register and displays the con-
tents of that address in the octal display. Sequential examination in-
crements the address by 2 and displays the contents of the
incremented addresses. This incrementation process is stopped if any
key other than the numeric keys is depressed.

DEP (Deposit) — Depressing this switch deposits the contents of the
temporary switch register at the UNIBUS address specified by the
console address register. The console switch register is not changed.
To deposit data into sequential addresses, all that is necessary is to
press the DEP key. This automatically word-increments the console
address register and deposits the data into the incremented address.
This process is stopped if any key other than the numeric keys is
depressed.

*CONT (Continue) — Depressing this switch allows the processor to
leave console mode and continue operation at the present Program
Counter (PC) location without a BUS INIT. The display is unaltered.

*START — Depressing this switch begins machine operation at the
address (PC) specified by the console address register after a BUS
INIT signal. Operation occurs only in console mode and the CONSOLE
mode light is turned off. The display is unattered.

*BOOT (Bootstrap) — Depressing this switch will cause a BUS INIT
and will start the boot program of the M9301 module. The display is
unaltered.

*DIAG (Diagnostic) — Depressing this switch transfers control to the
DCS (Diagnostic Control Store) module, if present. Otherwise, the
computer enters console mode. The display is unaltered.

MAINT (Maintenance) — This key is used to read and write the inter-

nal registers. The procedure for reading an internal register is:

1. Load the temporary switch register with the read code of the regis-
ter that you wish to read. The opcodes for the internal registers are
listed in Table 8-4.

2. Depress the (L)SWR keypad switch while holding the CNTRL key-
pad switch depressed. This transfers the contents of the temporary
switch register to the console switch register.

3. Depress the MAINT keypad switch while holdingthe CNTRL switch
depressed. The console display will display the contents of the
register specified by the opcode in step 1.

223

o

PDP-11/60

The procedure for writing an internal register is:

1. Load the temporary switch register with the write opcode of the
register that you wish to write. The internal register function codes
are listed in Table 8-4.

2. Depress the (L)SWR keypad switch while holding the CNTRL key-
pad switch depressed. This transfers the contents of the temporary
switch register to the console switch register.

3. Load the temporary switch register with the data to be written by
depressing the applicable numeric switches.

4. Depress the MAINT keypad switch while holding the CNTRL switch
depressed. The console display will display the data that has been
written into the specified register.

NOTE In Table 8-4, a register can have several
names, depending upon its use at a given time. For
example, in the C Scratchpad, the register with the
read/write code of 100/300 can be used as a floating
point (FP) register or as the log jam register.

TABLE 8-4 Internal Registers Read/Write Function Codes

ASP LO: ASCRATCHPAD [0:15]

Register Read/Write Code
RO 000/200
R1 001/202
R2 002/202
R3 003/203
R4 004/204
R5 005/205
R6 006/206
R7 007/207
FAC3[0] 010/210
FAC3[1] 011/211
FAC3[2] 012/212
FAC3[3] 013/213
FAC3[4] 014/214
FAC3[5] 015/215
USER R6 016/216
FDST3 017/217

224

i

PDP-11/60

ASPHI: A SCRATCHPAD [16:31]

Register Read/Write Code
WCSAIO0] 020/220
WCSA[1] 021/221
WCSADR 022/222
CNSL.CADR 023/223
R(SRC) 024/224

R(SRC X) 025/225

R(SRC)

R(T1A)

R(VECT)
R(DST) 026/226

R(DST X)

R(T2A)

R(DST)
CNSL.SW
CNSL.TMPSW 027/227
FAC1[0] 030/230
FAC1[1] 031/231
FAC1[2] 032/232
FAC1[3] 033/233
FAC1[4] 034/234
FAC1[5] 035/235
GEN, WHAMI 036/236
FPSHI, FEC FDST 1 037/237

225

PDP-11/60

BSPLO: B SCRATCHPAD [0:15]

Register Read/Write Code
RO 040/240
R1 041/242
R2 042/242
R3 043/243
R4 044/244
R5 045/245
R6 046/246
R7 047/247
FAC2[0] 050/250
FAC2[1] 051/251
FAC2[2] 052/252
FAC2[3] 053/253
FAC2[4] 054/254
FAC2[5] 055/255
USER R6 , 056/256
FDST2 057/257

BSPHI: B SCRATCHPAD [16:31]

Register Read/Write Code
WCSB[0] 060/260
WCSBJ[1] 061/261
WCSBJ2] 062/262
R(ZERO) 063/263
R(SRC) 064/264

R(SRC, X)

R(ES)

R(T1B)
R(DST) 065/265

R(DST X)

R(T2B)

R(ES)
R(IR) 066/266
CNSL.CNTL 067/267

226

e

PDP-11/60

CSP-C SCRATCHPAD [0:15]

Register Read/Write Code
FP, LOG JAM 100/300
FP, LOG SERVICE 101/301
FP, LOG PBA 102/302
FP, LOG CUA 103/303
FP, LOG FLAG/INTR 104/304
FP, LOG WHAMI 105/305
FP, LOG CACHE DATA 106/306
FP, LOG TAGECPU 107/307
FP, CONSOLE 110/310
FP, CONSOLE 111/311
FP, CONSOLE 112/312
FP, CONSOLE 113/313
CONST 2 114/314
MD 115/315
CONSTO 116/316
CONST 1 117/317
227

PDP-11/60

OTHER REGISTERS

Register Read/Write Code
JAM 140/ — Read only
SERVICE 141/ — Read only
PBA 142/ — Read only
CUA 143/ — Read only
FLAG 144/344
REV 146/ —
DCSO 152/ —
DCS1 153/ —
D REG — /345 Write only
S REG — /346
COUNT 147/347
NUA — 350
RES — 351
INIT — 352
NO-OPS @
340-343
150-177
120-137
320-337
352-377

228

e

PDP-11/60

PROGRAMMABLE STACK LIMIT

The stack limit allows program control of the lower limit for permissi-
ble stack addresses. This limit may be varied in increments of (400),
words, up to a maximum address of 177400, aimost the top of a 32K
memory.

The normal boundary for stack addresses is 400. The stack limit op-
tion allows this lower limit to be raised, providing more address space
for interrupt vectors or other data that should not be destroyed by a
program,

There is a stack limit register, with the following format:

15 8 7 0

STACK LIMIT DATA NOT USED
L L s " N

Figure 8-11 Stack Limit Register Format

The stack limit register can be addressed as a word at location
777774, or as a byte at location 777775. The register is accessible to
the processor and to the console, but not to any bus device.

The eight bits 15 through 8 contain the stack limit information. These
bits are cleared by system reset, console start, or the RESET instruc-
tion. The lower 8 bits are not used. Bit 8 corresponds to a value of
(400), or (256),,.

The contents of the stack limit register (SL) are compared to the stack
address to determine if a violation has occurred (although memory
references that do not alter memory are always allowed). The least
significant bit of the register (bit 8) has a value of (400),. The determi-
nation of the violation zones is as follows:

e Yellow Zone = (SL) + (340 through 377), execute, then trap.

eRed Zone = (SL) + (337)g abort, then trap to location 4.

The stack limit register contents were zero:
e Yellow Zone = 340 through 377
eRed Zone = 000 through 337

INTEGRAL FLOATING POINT INSTRUCTIONS

The PDP-11/60 contains integral floating point hardware which can
execute the full complement of PDP-11 floating point instructions. The
instructions are noted in Chapter 10.

229

PDP-11/60

High-Speed Floating Point Processor Option

The FP11-E floating point processor is an optional, asynchronous,
parallel processor capable of doing high-speed arithmetic calcula-
tions. The FP11-E is logically contained on four hex modules that fit
into the processor backplane.

The FP11-E provides 17 digits of decimal accuracy, does 32-bit single
precision or 64-bit double precision arithmetic, and contains six 64-bit
accumulators. Additional information about the FP11-E may be found
in Chapter 10.

EXTENDED INSTRUCTION SET

The Extended Instruction Set (EIS) allows hardware fixed-point ar-
ithmetic and direct implementation of multiply, divide, and multiple
shifting. A double-precision 32-bit word can be handled. The Extend-
ed Instruction Set executes compatibly with the EIS available on the
PDP-11/34.

PRIORITY INTERRUPT

The PDP-11/60 interrupt system has four priority levels, each of which
can handle an almost unlimited number of devices. The priority of the
device is a function of the device’s electrical location on the UNIBUS —
the closer to the processor, the higher its priority on that level.

The priority system makes excellent use of the PDP-11's hardware
stacks. When the processor services an interrupt, it first saves
important prograim information on the stack. This information enables
the processor to return automatically to the same point in the program
and the same conditions, once the current interrupt has been ser-
viced.

The device causing the interrupt(s) provides a direct vector to its own
service routine — eliminating the slow and tedious operation of polling
all devices to see which one interrupted.

The system also allows interrupts to be enabled or disabled, through
software, during program operation. Such masking allows priorities to
change dynamically in response to system conditions.

For example, a real-time program can disable data entry terminals
whenever critical analog data is being collected. As soon as the scan is
complete, the terminals can automatically be enabled and ready to
input data.

RELIABILITY AND MAINTENANCE
The significant maintenance feature of the PDP-11/60 is the availabili-
ty of a wide spectrum of reliabilty and maintenance aids. The spectrum

230

I

PDP-11/60

ranges from software (system, diagnostics, error logging, microdiag-
nostics) to hardware (parity, error status registers, microbreak). These
aids are coordinated via the Reliability and Maintenance Program
(RAMP).

RAMP is a DIGITAL corporate program the purpose of which is the
development of trade-off data for use by DIGITAL’s engineering
groups in hardware design. Reliability means minimizing failures and
maintainability means planning for ease of maintenance and for mini-
mum time spentisolating faults and making repairs.

The design and packaging of the PDP-11/60 has placed great em-
phasis on RAMP. This means reduced mean timeé between failures
(MTBF) and reduced mean time to repair (MTTR).

Reliability

Reliability refers to the minimization of failures in hardware and soft-
ware. Some hardware failures can be avoided through better cooling
or less stress upon components. In other instances, when failures do
occur, it is important that the computer be less sensitive to the error
(fault tolerant).

Computer System Specifications
Environment
Operating Temperature: 10° C to 40° C
Relative Humidity: 20% to 80%, non-condensing

Mechanical (double-width lowboy)

Height: 50.5 inches (128.3 cm)

Width: 46.5 inches (118.11 cm)

Depth: 30 inches (76.20 cm)

Weight: PDP-11860, 930 Ibs.; PDP-11T60, 710 Ibs. (core version) or
560 Ibs. (MOS version)

231

i 1LY

‘

{ YT

Fronmpay b

A EERRLLK
(s A, 4

.

2

i 2 A |
EEFEEFES il

AEREFERR

SRERrEras il b IEEERRE L
sy AL

i 4 i iS5

AALL K,

232

CHAPTER 9

MICROPROGRAMMING

The user microprogramming capability of the PDP-11/60 offers you
an opportunity to custom tailor the processor’s performance to meet
your particular needs precisely. This feature is best utilized by those
whose programming requirements include bit manipulation of data or
by those who wish to increase the speed of a specific type of data
handling, for example, certain scientific calculations. A scientist who is
working with dynamic graphic display data may wish to increase the
speed and specificity of the calculation by utilizing one of the micro-
progamming options, either permanently or temporarily modifying the
way the processor implements the software.

DIGITAL offers excellent tutorial user documentation to support the
Writable Control Store software option. The programmer who wishes
to use the microprogramming options on the PDP-11/60 should have
extensive experience in assembly language programming and should
be familiar with the RSX-11M operating system.

For the user who wishes to take advantage of the features of micropro-
gramming but who does not wish to do the actual programming,
DIGITAL offers the option of consultation with software specialists who
are experienced in microprogram development. Specific micropro-
gramming application packaged systems are also available through
DIGITAL’s network of OEMs and independent software suppliers.

Three microprogramming options are offered with the PDP-11/60.

They are:

eUser Control Store — 1,024 48-bit words of random access memo-
ry, used for storing user microprograms and data. The USC includes
the Writable Control Store (WCS) hardware and the WCS software
tools: the MICRO-11/60 Assembler, the Microprogram Loader, and
the Microdebugging Tool.

eExtended Control Store — 1,536 48-bit words of read-only memory
for a microprogram. With ROM, there is no loss of microprogram
either through inadvertent program modification or through power
failure.

eDiagnostic Control Store — a hardware aid using microcode ana-
lysis of processor operations. It provides a read-only memory that
quickly allows isolation and analysis of many central processor
faults.

233

MICROPROGRAMMING

You may use only one microprogramming option at a time, but you
may find it useful to have all three options, using whichever is appro-
priate at any particular time.

The term Writable Control Store (WCS) is the industry-wide generic
term used to describe various options which enable the user to control
basic processor logic. These options vary widely in their capabilities.
Efforts to clarify the functions and capabilities of DIGITAL’s control
store options have led to each option’s being named individually, i.e.,
UCS, ECS, and DCS. In discussion of the PDP-11/60 microprogram-
ming capabilities, the term WCS refers to the hardware board and to
the accompanying software tools, all of which are considered part of
the UCS option.

MICROPROGRAMMING

Before explaining further the microprogramming options available
with the PDP-11/60, it is helpful to consider some of the basic con-
cepts of microprogramming and some of the variables which can in-
fluence your decision about whether or not to utilize microprogram-
ming capabilities.

Microprogramming is a method of controlling the functions of a com-
puter. The essential ideas of microprogramming were first outlined by
M.V. Wilkes in 1951 (Wilkes, M.V., “The Best Way to Design an Au-
tomatic Calculating Machine.” Manchester University Inaugural
Conference, 1951, pp16-21). Wilkes proposed a structured hardware
design technique to replace prevailing methods of logic design. He
observed that a machine-language instruction could be subdivided
into a sequence of elementary operations which he called micro-oper-
ations, and he compared the execution of the individual steps to the
execution of the individual instructions in a program. This concept is
the basis of all microprogramming.

For many years, microprogramming remained the province of the
hardware designer. As new machines were designed that incorporat-
ed advances in theory and technology, the software for the older,
slower machines became obsolete. Microprogramming proved to be
an attractive solution to this problem of incompatibility. New machines
could be provided with additional read-only memory, or control store,
which allowed them to emulate earlier computers. The use of emula-
tion, or the interpretive execution of a foreign instruction set, was later
extended to provide upward and downward capatibility among a num-
ber of computers in a family.

Microprogramming as a tool of the user has evolved slowly. Three
things had to happen before its use became feasible. First, technologi-

234

-

MICROPROGRAMMING

cal advances in the field of fast random-access memories were re-
quired. The use of read-only memories in a user environment was
troublesome and expensive, because correction of programming
errors, or bugs, required new memories. Second, user microprogram-
ming required the spread of previously specialized knowledge. When
only those engineers actually involved in the design of micropro-
grammed computers knew what microprogramming involved, users
and educators were at a severe disadvantage. In recent years, micro-
programming has found a place in computer science curricula, and
has been widely used throughout the electronics and scientific indus-
try. The third, and most important, prerequisite for user micropro-
gramming is the inclusion of generality and extendability in the design
of a computer. A machine designed solely to implement a given
instruction set, with no address space for user control programs,
makes alteration an onerous task. A corollary to this point is that
software tools had to be developed, so that the user would not have to
work solely with binary patterns.

The USC options and the software microprogramming tools devel-
oped for the PDP-11/60 now make user microprogramming a reality.

MICROINSTRUCTIONS

The heart of the 11/60 is a 3-board microprocessor, whose operation-

al unit is the data path. A data path is composed of three types of

components:

1. combinational units, such as adders, decoders, or other logical
circuits

2. sequential units, such as registers and counters
3. connections, such as wires

The execution of a PDP-11 instruction involves a sequence of trans-
fers from one register in the data path to another; some of these
transfers take place directly, others involve an adder or other logical
circuit. Each step in this sequence is controlled by a microinstruction;
a set of such microinstructions is known as a microprogram.

Microprograms are held in a control store, a block of high-speed
memory that can be accessed once per machine cycle. A machine
cycle is the basic unit of time within a processor.

PROCESSOR STATE

The processor state of a computer is the set of registers and flags that
hold the information left upon the completion of one instruction avail-
able for use during the execution of the next instruction.

235

MICROPROGRAMMING

Programmers working at different levels of a machine see different
machine states; an applications programmer may never be concerned
with machine state at all. A machine-language or macro-level pro-
grammer knows the PDP-11 processor state to be defined by the
contents of RO through R7 and the processor status word. Nearly 100
registers are included in the machine state known to 11/60
microprogrammers. At the nano- or hardware level, even more ma-
chine state is seen.

This concept of machine, or processor, state is fundamental to an
understanding of microprogrammable processors like the 11/60.
State changes at the microprogramming level can affect the macro-
level processor state.

A computer is unique, or defined, by the functions it performs and the
machine states it enters while performing those functions. Because of
this, two machines can be built differently and yet perform identically.
A microprogrammed machine changes state as it reads successive
locations in the control store, emulating the state changes that would
take place in a completely hard-wired machine. Additionally, the ma-
cro-level state, which is a subset of the micro-level machine state,
changes as if there were no machine but the macro-level machine.

ARCHITECTURE AND ORGANIZATION

To distinguish the micro-level machine from the macro-level machine,
it is useful to differentiate between the terms architecture and or-
ganization.

Architecture refers to that set of a computer’s features that are visible
to the programmer. To a PDP-11 machine-language programmer, this
includes the general registers, the instruction set, and the processor
status word.

Organization describes a level below architecture, and is concerned
with many items that are invisible to the programmer. The term archi-
tecture describes what facilities are provided, while organization is
concerned with how those facilities are provided. Occasionally, anoth-
er term is included in this hierarchy: realization. This term is used to
characterize the components used in a particular machine implemen-
tation, such as the type of logic and chips used.

The macro-level organization, transparent to the macro-level
programmer, defines the micro-level architecture of the machine. The
concept is illustrated graphically in Figure 9-1.

The micro-level architecture of the 11/60 is radically different from the
standard PDP-11 structure visible to the macro-level programmer. To

236

-

A

MICROPROGRAMMING

MACRO-LEVEL ARCHITECTURE

PDP-11 INTRODUCTION SET, GENERAL REGISTERS, etc.
PROGRAM RESIDES IN MAIN MEMORY.

MACRO-LEVEL ORGANIZATION= MICRO-LEVEL ARCHITECTURE

PDP-11/60 REGISTERS(100) AND OPERATIONAL CAPABILITIES.
PROGRAMS RESIDE IN CONTROL STORE.

MICRO-LEVEL ORGANIZATION

HARD-WIRED LOGIC

Figure 9-1 Hierarchical Structure of Memories, Architecture, and
Organization

microprogram the 11/60 successfully, you must familiarize yourself
with the details of its micro-level architecture.

The 11/60 can be divided into five logical sections. The micropro-

grammer’s task is to control the flow of data within each of these five

basic sections, and sometimes between them.

ethe data-path section, where most data handling functions are per-
formed

ethe bus control section, which contains the UNIBUS control logic,
the timing generator, and the console interface

ethe KT/cache section, which contains the memory management log-
ic (KT), the stack limit register (KJ), and 1024 words of high-speed
cache memory

ethe processor control section, which contains the control store for
the base machine in the form of a read-only memory, ROM; other
control logic, the processor status word (PS) and the floating point
status register (FPS)

ethe WCS section, which contains additional control store for the user

237

MICROPROGRAMMING

microprogrammer in the form of a RAM (Random Access Memory).
This RAM can also be used as a high-speed local store with the aid of
routines stored in the transfer micro store (TMS) ROM.

USER CONTROL STORE OPTION

The principal use of the 11/60 microprocessor is the implementation
of the PDP-11 instruction set. However, the processor has been de-
signed with a dynamic control structure so that other functions can be
implemented. The UCS option provides additonal and alterable
control store for the 11/60, enabling you to extend the capabilities of
the PDP-11. Possible applications range from extending the PDP-11
instruction set to emulating a computer with a different instruction set.

The Writable Control Store is a 1-board hardware option for the 11/60
central processor, which includes a 1K-by-48-bit Random Access
Memory (RAM). This hardware by itself is not the complete product.

To use the WCS hardware, that is, to do microprogram development
and debugging, DIGITAL provides the following software tools:

ethe Microprogram Assembler: MICRO-11/60
ethe Microprogram Loader: MLD
ethe Microprogram Debugging Tool: MDT

MICRO-11/60 .

The MICRO-11/60 assembler converts microprograms written in its
source language to absolute object code. The source language of
MICRO-11/60 allows the symbolic definition of fields and macros and
the use of these names in specifying the actions to be performed by
the microprogram.

The MICRO-11/60 assembler performs two logical functions: transla-
tion and address selection. In transiating names within a microinstruc-
tion to the appropriate set of bits, the assembler also performs valu-
able syntax and error checking. In assigning addresses, the assembler
aids the programmer in laying out branches and in allocating storage
in an effective manner.

MICROPROGRAM LOADER
The Microprogram Loader (MLD) performs three functions in loading
the Writable Control Store:

einitialization of the Writable Control Store to a special pattern
eloading of the resident section-of the Writable Control Store
e|oading of the set of object modules that make up the microprogram

238

MICROPROGRAMMING

MICRODEBUGGING TOOL

The MicroDebugging Tool (MDT) is a stand-alone program that pro-
vides an efficient tool for debugging 11/60 microprograms. Using
MDT you can monitor the execution of your microprogram. You can
set breakpoints, examine and change data or instructions in main or
micro memory, and alter the control of the program.

MDT is intended for debugging microprograms. Usually, the program
to be debugged consists of a small main memory program and a
microprogram. The main memory program’s purpose is to call the
microprogram and, in some cases, provide data for the microprogram
to manipulate. MDT takes over the machine and controls all I/0 vec-
tors and, consequently, all the interrupts. Therefore, the processing
that can be done by the main memory program is limited. It cannot, for
example, perform any input or output unless you make special provi-
sions for handling 1/0.

Because MDT is used to debug microprograms, it saves the state of
the machine.

WCSs

WCS enables you to tailor, or bias, the PDP-11 to your particular

special purpose needs. Such tailoring can be classified hierarchically

as follows:

Class 0 Instruction Set Extensions
Some functions were considered to be too special-
purpose in nature to be included in the original PDP-
11 design. These functions, such as block move and
decimal arithmetic, can become new PDP-11 in-
structions. Their definition should conform to 11-in-
struction format and style.

Class 1 Application Kernels

Most applications and systems programs have sec-
tions which are executed much more frequently than
others. A useful rule of thumb is that 10% of the code
is executed 90% of the time. Kernels within these
critical sections can be microprogrammed for better
throughput. Examples include the Fast Fourier
Transform, and operation system’s memory alloca-
tion routine, and Cyclic Redundancy Check calcula-
tions.

239

MICROPROGRAMMING

Class 2 Emulation

The interpretive execution of an instruction set by
software is generally called simulation. When this in-
terpretation is done by hardware it is called emula-
tion. Microprogramming provides a means for inex-
pensively emulating several different instruction sets
on one piece of hardware. The tasks involved in
emulation include instruction decode, address cal-
culation, operand fetch, and 1/0 operation, as well as
instruction execution.

Class 0 applications are relatively simple and straightforward uses of
microprogramming. Class 1 applications require more intensive study
and possibly statistical analysis if they are to improve performance
significantly.

The final class of applications, emulation, is best served by a machine
specifically designed as a general purpose emulator. The 11/60 was
designed to emulate a PDP-11; hence, the organization of its data path
is keyed to the 16-bit PDP-11 word and to the other characteristics of a
PDP-11 computer system. These factors in large part determine what
other computers can be emulated by the 11/60.

WCS MICROPROGRAMMING

To gain real benefit from use of the UCS option, you should invest time
and resources in two areas of study before attempting any WCS mi-
croprogramming. These two areas are: 1) understanding the 11/60,
and 2) analyzing your proposed application.

To microprogram the 11/60 effectively, you must study the internal’
details of the microprocessor — particularly the data path. Although
this is not a difficult task per se, the largely unprotected nature of the
microprogramming environment may seem overly complex and un-
predictable.

Use of microprogramming will not always result in significant perform-
ance gains. Applications well suited to microprogramming may
improve performance by a factor of 5 to 10; poorly suited ones not at
all. You must understand your application and analyze the execution
of its individual instructions. This section is aimed at helping such
analysis, but it is in no way a complete treatment of performance
analysis.

A machine-language instruction goes through the following process-
ing phases:)

|I-phase Instruction fetched from memory and decoded.

240

.

MICROPROGRAMMING

O-phase Operand addresses calculated; operands fetched
from memory.

E-phase Operation executed upon operands.

Each of these phases takes one or more micro-cycles. The total exe-
cution time, assuming no overlap of the phase, is the sum of these
microcycles. Each phase can be seen as a candidate for elimination or
for cycle reduction through microprogramming, with resulting gains in
performance.

The following generalizations can be made.
Composite operations save I-cycles.

A block move on the PDP-11 can be programmed as:

MOV COUNT,R0 ;INSTRUCTION 1

MOV #A,R1 ;2:FIRST SOURCE ADDRS TO R1

MOV #B,R2 ;3:FIRST DESTINATION ADDRS
;TOR2

LOOP: MOV (R1)+,(R2)+ ;4:MOVE AND INCREMENT

;BOTH ADDRS

SOB RO, LOOP ;5:DECREMENT AND TEST
;COUNTER

Combining these operations into one instruction,
BLOCKMOV #A, #B, COUNT

elimates I-cycles, with the predominant savings coming fram instruc-
tions four and five.

Using processor storage saves O-cycles.

The microprogrammer can use internal CPU storage (the hardware
registers) for intermediate results. There are a number of hardware
registers, in addition to the general registers R0-PC, which can be
used by the microprogrammer to avoid memory cycles.

Because there is more parallelism at the micro-level, the inner ma-
chine (the microprocessor) is potentially more efficient than the outer
machine (the PDP-11). Moverover, the microbranching logic structure
of the microprocessor provides a broader decision logic capability
which can be exploited, for example, in table search and string-edit
operations.

In general, most cycle reductions which result from microprogram-
ming come for the |- and O-phases of instructions.

241

MICROPROGRAMMING

When analyzing instructions, you must also consider the ratio of the
time used by the I- and O-phases to that of the E-phase:

I+0

E
In vector scalar multiplication, for example, the cycles saved by a
composite instruction are a small fraction of the overall execution
time.

In summary, you should analyze your application to develop candidate
sections for microprogramming, then apply detailed analysis to the
instruction execution sequence before coding a microprogram.

INSTRUCTION FORMATS

An instruction, whether at the macro-level or the micro-level, is the
basic mechanism that allows a procedure to be invoked. Instructions
usually take two source operands and produce a single resuit. This
kind of instruction has five logical functions:

1) and

2) Specify the address (location in storage) of the two source oper-
ands.

3) Specify the address at which the result of the operation is to be
stored.

4) Specify the operation to be performed on the two source operands.
5) Specify the address of the next instruction in the sequence.

These specifications may be explicit or implicit. Implicit specification
saves space in the instruction at the expense of additional instructions
in the sequence.

There are four common formats for instructions: 3-address, 2-
address, single-address, and zero-address (stack-type). These cate-
gories indicate how many of the address specifications are explicit in
the instruction.

A normal PDP-11 instruction of the form OPR SRC DST uses a 2-
address instruction format. The addresses of both the source oper-
ands are explicitly specified. The result address is implicitly specified
by the address of the destination operand. The next instruction to be
executed is implicitly identified by the contents of the program coun-
ter.

The 11/60 microword, on the other hand, uses a 4-address instruction
format: two source operand addresses, result address, and next in-
struction address are all explicitiy identified in each instruction. There
is no microprogram counter analogous to the PDP-11 PC.

242

A

MICROPROGRAMMING

Sequencing and Branching

Because there is no incremental program counter at the micropro-
gramming level in the 11/60, each microinstruction specifies the
address of its successor. Therefore, there is no requirement that mi-
croinstructions execute sequentially according to their storage ad-
dress.

Moreover, each microinstruction can also specify a branch condition
to be tested before the next microinstruction is fetched. The result of
the test can cause a different microinstruction to be fetched.
MICROPROGRAM FLOW

The basic interpretive loop of instruction execution in 11/60 micro-
code is as follows:

— FETCH MEMORY WORD ADDRESSED BY PC

\
INCREMENT PC

DECODE

¥
EXECUTE

Every microprogram invoked by a PDP-11 opcode follows this pattern.
The instruction currently pointed to by the contents of the PC is
brought into the processor from main memory and stored in the in-
struction register, or IR. The PC is incremented by two so that it points
at the next location to be accessed. The decode step identifies what
instruction is to be executed, and dispatches control to the proper
section of microcode. After the operaton is performed, another in-
struction is fetched.

A slightly more detailed flow structure is shown in Figure 9-2. Note that
at the completion of the instruction execution, a test is made for ser-
vice conditions. If no service condition, such as an interrupt, exists, the
next instruction is fetched. If a service condition does exist, control
passes to another microprogram which handles the interrupt or other
condition. The I-, O-, and E-phases are noted at the left side of the
diagram.

243

MICROPROGRAMMING ;
|
-
FETCH
GET INSTR,,
INCREMENT PC
I-PHASE
DECODE
.
-
MEMORY
OPERANDS
REQUIRED
?
J COMPUTE
NO OPERAND
ADDRESSES
O-PHASE
FETCH
OPERANDS
INCREMENT
PC
.
K
EXECUTE
E -PHASE SERVICE
CONDITION
.

Figure 9-2 Program Flow in the PDP-11/60

244

245

|-

CHAPTER 10

FLOATING POINT PROCESSORS

The floating point processor is an option available for all members of
the PDP-11 family except the 11/03 and 11/04. A floating point pro-
cessor (FPP) is much faster and more effective for high speed numeri-
cal data handling than software floating point routines. Users who are
programming in FORTRAN, BASIC, and APL find that the FPP gives
them the speed and capability that they require for data and number
manipulation.

There are three FPPs available for the PDP-11 family: the FP11-A,
used with the PDP-11/34; the FP11-C, used with the PDP-11/45,
11/55, and 11/70; and the FP11-E, used with the PDP-11/60.

FPPs perform all floating point arithmetic operations and convert data

between integer and floating point formats.

Features of the floating point processors are:

®17-digit precision in 64-bit mode, 8 in 32-bit mode

eoverlapped operation with the central processor (FP11-C and FP11
-E)

e high speed operation

esingle and double precision (32-or 64-bit) floating point modes

eflexible addressing modes

®6 64-bit floating point accumulators

eerror recovery aids

ARCHITECTURE

The floating point processors contain scratch registers, a floating ex-
ception address pointer (FEA), a program counter, a set of status and
error registers, and six general purpose accumulators, AC0-ACS5.

The accumulators are 32 or 64 bits long, depending on the instruction
and on the FPP status. In a 32-bit instruction, only the left-most 32 bits
are used.

The six floating point accumulators are used in numeric calculations
and in inter-accumulator data transfers. The first four accumulators
(ACO0-AC3) are also used for all data transfers between the FPP and
the general registers, or memory.

247

FLOATING POINT PROCESSORS

r 64 BIT 1
| ACCUMULATOR |
| 32 BIT FEF |
| ACCUMULATOR EXCEPTION |l STF APTPU s |
— R SODE IaTER UNIBUS
| ace |
| ac l
| ace I [centrac PROCESSOR
FLOATING POINT [|procEsSOR STATUS
AC3 ARITHMETIC ARITHMETIC
| aca CONVERSION || &ho =
| acs UNIT | UNIT GENERAL
REGISTER
I SCRATCH |
PROGRAM POINTER
| TO LAST | mewmory
| INSTRUCTION |
CAUSING ERROR
| FLOATING POINT PROCESSOR _!

Figure 10-1 Floating Point Processor

OPERATION

A floating point processor functions as an integral part of the central
processor. It operates using similar address modes, and using the
same memory management facilities provided by the memory man-
agement option. FPP instructions can reference the floating point ac-
cumulators, the central processor’s general registers, or any location
in memory.

The FP11-C and the FP11-E overlap operation with the central proces-
sor. When a FPP instruction is fetched from memory, the FPP will
execute that instruction in parallel with the CPU as the CPU continues
its instruction sequence. The CPU is delayed a very short period of
time during the FPP instruction fetch operation, and then is free to
proceed independently of the FPP. The interaction between the two
processors is automatic, permitting a program to take full advantage
of the parallel operation of the two processors, by the intermixing of
FPP and CPU instructions. This is all accomplished by the hardware of
the processors. When a FPP instruction is encountered in a program,
the CPU first initiates floating point handshaking and calculates the
address of the operand. It then checks the status of the FPP. If the FPP
is busy, the CPU waits until it receives a done signal before continuing
execution of the program. For example:

248

-

FLOATING POINT PROCESSORS

LDD(R3)+,AC3 ;Pick up constant operand and

;place itin AC3
ADDLP: LDD(R3)+,ACO ;Load ACO with next value

;intable

MUL AC3,ACO ;and multiply by constant
;in AC3

ADDD ACO0,ACH ;and add the result into AC1

SOB R5,ADDLP ;check to see whether done

STCDIAC1@R4 ;done, convert double

;to integer and store.

In this example, the FPP executes the first three instructions. After the
ADD is fetched into the FPP, the CPU will execute the SOB, calculate
the effective address of the STCDI instruction, and then wait for the
FPP to be done with the ADDD before continuing past the STCDI
instruction. Autoincrement and autodecrement addressing automati-
cally adds or subtracts the correct amount to the contents of the
register, depending on the modes represented by the instruction.

FLOATING POINT DATA FORMATS

A floating point number is defined as having the form (2)f, where K is
an integer and f is a fraction. For a non-vanishing number, Kand f are
uniquely determined by imposing the condition 1/2<f<1. The frac-
tional part, f, of the number is said to be normalized. For the number
zero, f must be assigned the value 0, and the value of K is indetermi-
nate.

The FPP data formats are derived from this mathematical representa-
tion for floating point numbers. Two types of floating point data are
provided: single precision, or floating mode, where the word is 32 bits
long; and double precision, or double mode, where the word is 64 bits
long. Sign magnitude notation is used.

Non-Vanishing Floating Point Numbers

The fractional part f is assumed normalized, so that its most significant
bit must be 1. This 1 is the hidden bit; it is not stored in the data word,
but the hardware restores it before carrying out arithmetic operations.
The floating and double modes reserve 23 and 55 bits respectively for
f, which with the hidden bit imply effective word lengths of 24 bits and
56 bits for precise arithmetic operations.

Eight bits are reserved for the storage of the exponent K in excess
128(200 octal) notation (i.e., as K+200 octal). Thus exponents from —
128 to +127 can be represented by 0 to 377 (octal), or 0 to 255 (deci-
mal). For reasons given below, a biased EXP of 0 (true exponent of —
200(octal)) is reserved for floating point zero. Thus exponents are

249

FLOATING POINT PROCESSORS

restricted to the range —127 to +127 inclusive (—117 to 177 (octal)) or,
in excess 200(octal) notation, 1 to 377 (octal). The remaining bit of the
floating point word is the sign bit.

Floating Point Zero

Because of the hidden bit, the fractional part is not available to distin-
guish between zero and non-vanishing numbers whose fractional part
is exactly 1/2. Therefore, the FPP reserves a biased exponent of 0 for
this purpose. Any floating point number with biased exponent of 0
either traps or is treated as if it were an exact 0 in arithmetic
operations. An exact zero is represented by a word in which the bits
are all 0s. An arithmetic operation in which the resulting true exponent
exceeds 177 (octal) is regarded as producing a floating overflow; if the
true exponent is less than —177 (octal) the operation is regarded as
producing a floating underflow. A biased exponent of 0 can thus arise
from arithmetic operations as a special case of underflow (true expo-
nent = 0). Recall that only eight bits are reserved for the biased expo-
nent. The fractional part of the results obtained from such overflows
and underflows is correct.

The Undefined Variable

The undefined variable is any bit pattern with a sign bit of one and a
biased exponent of zero. The term undefined variable is used to indi-
cate that these bit patterns are not assigned a corresponding floating
point arithmetic value. An undefined variable is frequently referred to
as “—0" elsewhere in this chapter.

The FPP design assures that the undefined variable will not be stored
as the result of any floating point operation in a program run with the
overflow and underflow interrupts disabled. This is achieved by stor-
ing an exact zero on overflow or underflow, if the corresponding inter-
rupt is disabled. This feature, together with an ability to detect a
reference to the undefined variable, is intended to provide the user
with a debugging aid. If a —0 is generated, it is not a result of a
previous floating point arithmetic instruction.

FLOATING POINT DATA
Floating point data is stored in words of memory as illustrated below.

F Format, single precision

ISl EXP FRA] *r CTION
T L . PR PRV TR ST WA S S S S S T SO
15 14 76 [} 15

250

o

FLOATING POINT PROCESSORS

D Format, double precision

.......

S = Sign of fraction

EXP = Exponent in excess 200 notation, restricted to 1 to 377 octal for
non-vanishing numbers.

FRACTION = 23 bits in F Format, 55 bits in D Format, + one hidden bit
(normalization). The binary radix point is to the left.

The FPP provides for conversion of floating point to integer format and
vice-versa. The processor recognizes single precision integer (I) and
double precision integer long (L) numbers, which are stored in stan-
dard 2's complement form:

| Format
|:3| NUMBER]
e S, —_—
L Format
H NUM I [BER J
o - X _ . <
where

S = Sign of number
NUMBER = 15 bits in | Format, 31 bits in L Format.

FLOATING POINT UNIT STATUS REGISTER (FPS REGISTER)
This register provides mode and interrupt control for the floating point
unit, and conditions resulting from the execution of the previous in-
struction.
Four bits of the FPS register control the modes of operation:
e Single/Double: Floating point numbers can be either single or dou-
ble precision.
eLong/Short: Integer numbers can be 16 bits or 32 bits.
251

FLOATING POINT PROCESSORS

eChop/Round: The result of a floating point operation can be either
chopped or rounded. The term chop is used instead of truncate in
order to avoid confusion with truncation of series used in approxima-
tions for function subroutines.

eNormal/Maintenance: A special maintenance mode is available on
the FP11-C and FP11-E.

The FPS register contains an error flag and four condition codes (5
bits): carry, overflow, zero, and negative, which are equivalent to the
CPU condition codes.

The floating point processor recognizes seven floating point excep-
tions:

e detection of the presence of the undefined variable in memory
efloating overflow

efloating underflow

efailure of floating to integer conversion

emaintenance trap

e attempt to divide by zero

eillegal floating OP code

For the first five of these exceptions, bits in the FPS register are
available to enable or disable interrupts individually. An interrupt on
the occurrence of either of the last two exceptions can be disabled
only by setting a bit which disables interrupts on all seven of the excep-
tions as a group.

Of the fourteen bits described above, five, the error flag and condition
codes, are set by the FFP as part of the output of a floating point
instruction. Any of the mode and interrupt control bits (except the
FP11-C and FP11-E, FMM bit) may be set by the user; the LDFS
instruction is available for this purpose. These fourteen bits are stored
in the FPS register as follows:

Bit Name
15 Floating Error (FER)
Description

The FER bit is set by the FPP if:
1. Division by zero occurs.
2. lllegal OP code occurs.

3. Any one of the remaining occurs and the corressponding interrupt
is enabled.

252

FLOATING POINT PROCESSORS

Note that the above action is independent of whether the FID bit (next
item) is set or clear.

Note also that the FPP never resets the FER bit. Once the FER bit is set
by the FPP, it can be cleared only by an LDFPS instruction or by the
RESET instruction. This means that the FER bit is up-to-date only if the
most recent floating point instruction produced a floating point excep-
tion.

Bit Name
14 Interrupt Disable (FID)
Description

If the FID bit is set, all floating point interrupts are disabled. Note that if
an individual interrupt is simultaneously enabled, only the interrupt is
inhibited; all other actions associated with the individual interrupt en-
abled take place.

NOTES: The FID bit is primarily a maintenance
feature. Normally, it should be clear. In particular, it
must be clear if you wish to assure that storage of —0
by the FPP is always accompanied by an interrupt.

Through the rest of this chapter, it is assumed that
the FID bit is clear in all discussions involving over-
flow, underflow, occurrence of —0, and integer con-
version errors.

Bit Name

13 Not Used

Bit Name

12 Not Used

Bit Name

11 Interrupt on Undefined Variable (FIUV)
Description

An interrupt occurs if FIUV is set and a —0 is obtained from memory as
an operand of ADD, SUB, MUL, DIV, CMP, MOD, NEG, ABS, TST, or
any LOAD instruction. The interrupt occurs before execution except
on NEG and ABS instructions. For these instructions, the interrupt
occurs after execution. When FIUV is reset, —0 can be loaded and
used in any FPP operation. Note that the interrupt is not activated by
the presence of —0 in an AC operand of an arithmetic instruction. In
particular, trap on —0 never occurs in mode 0.

253

FLOATING POINT PROCESSORS

The FPP will not store a result of —0 without the simultaneous occur-
rence of an interrupt.

Bit Name
10 Interrupt on Underflow (FIU)
Description

When the FIU bit is set, floating underflow will cause an interrupt. The
fractional part of the result of the operation causing the interrupt will
be corrected. The biased exponent will be too large by 400 (octal),
except for the special case of 0, which is correct. An exception is
discussed in the detailed description of the LDEXP instruction.

If the FIU bit is reset and if underflow occurs, no interrupt occurs and
the result is set to exact 0.

Bit Name
9 Interrupt on Overflow (FIV)
Description

When the FIV bit is set, floating overflow will cause an interrupt. The
fractional part of the result of the operation causing the overflow will
be correct. The biased exponent will be too small by 400 (octal).

If the FIV bit is reset, and overflow occurs, there is no interrupt. The
FPP returns exact 0. Special cases of overflow are discussed in the
detailed descriptions of the MOD and LDEXP instructions.

Bit Name
8 Interrupt on Integer Conversion Error (FIC)
Description

When the FIC bit is set, and a conversion to integer instruction fails, an
interrupt will occur. If the interrupt occurs, the destination is set to 0,
and all other registers are left untouched.

If the FIC bit is reset, the result of the operation will be the same as
explained above, but no interrupt will occur.

The conversion instruction fails if it generates an integer with more bits
than can fit in the short or long integer word specified by the FL bit
(see bit 6 below).

Bit Name
7 Floating Double Precision Mode (FL)
Description

Determines the precision that is used for floating point calculations.
When set, double precision is selected; when reset, single precision is
used.

254

T

FLOATING POINT PROCESSORS

Bit Name
6 Floating Long Integer Mode (FL)

Description

Active in conversion between mteger and floating point format. When
set, the integer format selected is double precision 2's complement
(i.e., 32 bits). When reset, the integer format is assumed to be single
precision 2's complement (i.e., 16 bits).

Bit Name
5 Floating Chop Mode (FT)

Description
When bit FT is set, the result of any arithmetic operation is chopped
(or truncated).

When reset, the result is rounded.

Bit Name
4 Floating Maintenance Mode (FMM)
(FP11-C and FP11-E)

Description

This code is a maintenance feature. Refer to the maintenance manual
for the details of its operation. The FMM bit can be set only in kernel
mode.

Bit Name
3 Floating Negative (FN)
Description

FN is set if the result of the last operation was negative, otherwise it is
reset.

Bit Name

2 Floating Zero (FZ)

Description

FZ is set if the result of the last operation was zero; otherwise it is reset.
Bit Name

1 Floating Overflow (FV)

Description
FV is set if the last operation resulted in an exponent overflow; other-
wise it is reset.

Bit Name
0 Floating Carry (FC)
Description

FC is set if the last operation resulted in a carry of the most significant
bit. This can occur only in floating or double to integer conversions.

265

FLOATING POINT PROCESSORS

FLOATING EXCEPTION CODE AND ADDRESS REGISTERS

One interrupt vector is assigned to take care of all floating point ex-
ceptions (location 244). The seven possible errors are coded in the 4-
bit FEC (Floating Exception Code) register as follows:

2 Floating OP code error

4 Floating divide by zero

6 Floating (or double) to integer

conversion error

8 Floating overflow
11 Floating underflow
12 Floating undefined variable
14 Maintenance trap

The address of the instruction producing the exception is stored in the
FEA (Floating Exeception Address) register.

The FEC and FEA registers are updated when one of the following
occurs:

edivide by zero
ejllegal OP code

eany of the other five exceptions with the corresponding interrupt
enabled '

If one of the five exceptions occurs with the corresponding interrupt
disabled, the FEC and FEA are not updated. Inhibition of interrupts by
the FID bit does not inhibit updating of the FEC and FEA, if an
exception occurs. The FEC and FEA are not updated if no exception
occurs. This means that the STST (store status) instruction will return
current information only if the most recent floating point instruction
produced an exception. Unlike the FPS register, no instructions are
provided for storage into the FEC and FEA registers.

FLOATING POINT PROCESSOR INSTRUCTION ADDRESSING
Floating point processor instructions use the same type of addressing
as do the central processor instructions. A source or destination oper-
and is specified by designating one of eight addressing modes and
one of eight central processor general registers to be used in the
specified mode. The modes of addressing are the same as those of
the central processor except for mode 0. In mode 0 the operand is
located in the designated floating point processor accumulator, rather
than in a central processor general register. The modes of addressing
are:

0 = Direct Accumulator

1 = Deferred

2 = Autoincrement

256

FLOATING POINT PROCESSORS

3 = Autoincrement deferred
4 = Autodecrement

5 = Autodecrement deferred
6 = Indexed

7 = Indexed deferred

Autoincrement and autodecrement operate on increments and decre-
ments of 4 for F Format and 10 for D Format.

In mode 0, you can use all six FPP accumulators (ACO-AC5) as your
source or destination. In all other modes, which involve transfer of
data from memory or the general register, you are restricted to the first
four FPP accumulators (AC0-AC3).

In immediate addressing (mode 2, R7) only 16 bits are loaded or
stored.

ACCURACY

This section contains some general comments on the accuracy of the
FPP. The descriptions of the individual instructions include their accu-
racy. An instruction or operation is regarded as exact if the result is
identical to an infinite precision calculation involving the same oper-
ands. All arithmetic instructions treat an operand whose biased expo-
nent is 0 as an exact 0 (unless FIUV is enabled and the operand is —0,
in which case an interrupt occurs). For all arithmetic operations,
except DIV, a zero operand implies that the instruction is exact. The
same statement applies to DIV if the zero operand is the dividend, but
if it is the divisor, division is undefined and an interrupt occurs.

For non-vanishing floating point operands, the fractional part is binary
normalized. It contains 24 bits for floating mode and 56 bits for double
mode. The internal hardware registers contain 60 bits for processing
the fractional parts of the operands, of which the high order bit is
reserved for arithmetic overflow. There are, internally, 35 guard bits
for floating mode and 3 guard bits for double mode arithmetic opera-
tions. For ADD, SUB, MUL, and DIV, two guard bits are necessary and
sufficient to guarantee return of a chopped or rounded result identical
to the corresponding infinite precision operation, chopped or rounded
to the specified word length. Thus, with two guard bits, a chopped
result has an error bound of one least significant bit (LSB), a rounded
result has an error bound of 1/2 LSB. To obtain the corresponding
statements on accuracy for a radix other than 2, replace references to
bit in the two preceding sentences with the word digit. These error
bounds are realized for most instructions. For the addition of oper-
ands of opposite sign or for the subtraction of operands of the same
sign in rounded double precision, the error bound is 3/4 LSB (FP11-C,

257

FLOATING POINT PROCESSORS

and FP11-E or 33/64 (FP11-A), which is slightly larger than the 1/2
LSB error bound for all other rounded operations.

The error bound for the FP11-C differs from the FP11-A, since the
FP11-C and FP11-E carry three guard bits while the FP11-A carries
seven guard bits.

In the rest of this chapter an arithmetic result is called exact if no non-

vanishing bits would be lost by chopping. The first bit lost in chopping

is referred to as the rounding bit. The value of a rounded result is

related to the chopped result as follows:

elf the rounding bit is one, the rounded result is the chopped result
incremented by an LSB (least significant bit).

elf the rounding bit is zero, the rounded and chopped results are
identical.

It follows that:

elf the result is exact
rounded value = chopped value = exact value

e |f the result is not exact, its magnitude

— is always decreased by chopping

— is decreased by rounding if the rounding bit is zero
— isincreased by rounding if the rounding bit is one

Occurrence of floating point overflow and underflow is an error condi-
tion. The result of the calculation cannot be correctly stored because
the exponent is too big to fit into the 8 bits reserved for it. However, the
internal hardware produces the correct answer. For the case of under-
flow, replacement of the correct answer by zero is a reasonable reso-
lution of the problem for many applications. This is done on the FPP if
the underflow interrupt is disabled. The error incurred by this action is
an absolute rather than a relative error. It is bounded (in absolute
value) by 2-128, There is no such simple resolution for the case of
overflow. The action taken, if the overflow interrupt is disabled, is
described under FIV (bit 9).

The FIV and FIU bits (of the floating point status word) provide you with
an opportunity to implement your own fix-up of an overflow or
underflow condition. If such a condition occurs and the corresponding
interrupt is enabled, the hardware stores the fractional part and the
low 8 bits of the biased exponent. The interrupt will take place and you
can identify the cause by examination of the FV (floating overflow) bit
or the FEC (floating exception) register. You can readily verify that (for
the standard arithmetic operations ADD, SUB, MUL, and DIV) the

258

S

FLOATING POINT PROCESSORS

biased exponent returned by the hardware bears the following relation
to the correct exponent generated by the hardware:

eon overflow: it is too small by 400 octal

eon underflow: if the biased exponent is 0, itis correct. If itis not 0, itis
too large by 400 octal.

Thus, with the interrupt enabled, enough information is available to
determine the correct answer. You may, for example, rescale your
variables (VIA STEXP and LDEXP) to continue your calculation. Note
that the accuracy of the fractional part is unaffected by the occurence
of underflow or overflow.

FLOATING POINT INSTRUCTIONS

Each instruction that references a floating point number can operate
either floating or double precision numbers, depending on the state of
FD mode bit. Similarly, there is a mode bit FL that determines whether
32-bit integer (FL = 1)or a 16-bit integer (FL=0) is used in conversion
between integer and floating point representation. FSRC and FDST
use floating point addressing modes; SRC and DST use CPU address-
ing modes.

In fhe descriptions of the floating point instructions, the operations of
the FP11-A, FP11-E, and FP11-C are identical, except where explicitly
stated otherwise.

Floating Point Instruction Format

Mnemonic Description

oC Op Code = 17

FOC Floating Op Code

AC Accumulator

FSRC, FDST use FPP Address Modes

SRC, DST use CPU Address Modes

f Fraction

XL Largest fraction that can be represented:

1-2**(—24), FD=0, single precision
1-2**(—56), FD=1, double precision

259

FLOATING POINT PROCESSORS

XLL Smallest number that is not identically zero
=2"*(—128)—2** (—127))*J(1%2)

XUL Largest number that can be represented =
2**(127)*XL

JL Largest integer that can be represented:
2**(15)—1if FL=02**(31)—1if FL=1

ABS (address) Absolute value of (address)

EXP (address) Biased exponent of (address)

< Less than

< Less than or equal

> Greater than

2 Greater than or equal

LSB Least significant bit

Mnemonic/ Condition

Name Code Operation Codes

ABSF 1706FDST If (FDST) < OFDST FC <«0.

ABSD <« — (FDST). FV <0.

Make Abso- If EXP (FDST) =0, FZ «1if

lute Float- FDST <« exact 0. EXP(FDST) =0,

ing/Double For all other cases, else FZ < 0.

FDST < (FDST). FN <0
Description: Set the contents of FDST to its absolute value.
Interrupts: If FIUV is set; trap on —0 occurs after execution.

Overflow and underflow cannot occur.

Accuracy: These instructions are exact.
Special Ifa —0is presentin memory and the FIUV bit is

Comments: enabled, then the FP11-E and integral floating point
: unit store exact 0 in memory (zero exponent, zero
fraction, and positive sign). The condition code re-
flects an exact 0 (FZ < 1).

260

B (-

FLOATING POINT PROCESSORS

Mnemonic/ Condition
Name Code Operation Codes
ADDD 172ACFS- Let SUM = (AC) + FC <« 0.
Add Float- RO (FSRC): FV <« 1if over-
ing/Double If underflow occurs flow occurs, else
and FIU is not en- FV <«0.
abled, AC < exact FZ < 1if (AC) =
0. 0, else FZ<0.
If overflow occurs FN < 1if (AC) <
and FIV is not en- 0, else FN < 0.
abled, AC < exact
0.
For all other cases,
AC < SUM.

Description: Add the contents of FSRC to the contents of AC. The
addition is carried out in single or double precision
and is rounded or chopped in accordance with the
values of the FD and FT bits in the FPS register. The
result is stored in AC except for:

e overflow with interrupt disabled
e underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in
AC.

Interrupts: If FIUV is enabled, trap on —0 in FSRC occurs before
execution.

If overflow or underflow occurs and if the corres-
ponding interrupt is enabled, the trap occurs with
the faulty result in AC. The fractional parts are cor-
rectly stored. The exponent part is too large by 400
octal for underflow, except for the special case of 0,
which is correct.

Accuracy: Errors due to overflow and underflow are described
above. If neither occurs, then for oppositely signed
operands with exponent differences of 0 or 1 the
answer returned is exact if a loss of significance of
one or more bits occurs. Note that these are the only
cases for which loss of significance of more than one
bit can occur. For all other cases, the result is inexact
with error bounds of:

261

Special
Comment:

Mnemonic/
Name

CFCC

Copy Floating
Condition
Codes

Description:

Mnemonic/
Name

CLRF

CLRD

Clear Floating
/Double

Description:

Interrupts:

Accuracy:

Mnemonic/
Name

CMPF

CMPD
Compare Flo-
ating/Double

1704FDST

173 (FSRC) (AC)
(AC+4)

FLOATING POINT PROCESSORS

e 1LSB in chopping mode with either single or dou-
ble precision

©3/4 LSB (FP11-C and E) or 33/64 LSB (FP11-A) in
rounding mode with double precision

The undefined variable —0 can occur only in con-
junction with overflow or underflow. It will be stored
in AC only if the corresponding interrupt is enabled.

Condition
Code Operation Codes
170000 C<FC
V<«FV
Z<FZ
N <«FN

Copy FPP condition codes into the CPU’s condition
codes.

Condition
Codes
FC <0
FV<0
FZ <1
FN<0

Code Operation
FDST «exact0

Set FDST to 0. Set FZ condition code and clear other
condition code bits.

No interrupts will occur. Neither overflow nor under-
flow can occur.

These instructions are exact.

Condition
Codes

FC <0

FV <0

FSRC FZ <1 If (FSRC)
— (AC) =0, else
FZ <0
FN <1 If (FSRC)
- (AC) <0, else
FN <0

Code Operation

262

I

Description:

Interrupts:

Accuracy:

Special
Comment:

Mnemonic/
Name

DIVF

DIVD

Divide Float-
ing/Double

Description:

FLOATING POINT PROCESSORS

Compare the contents of FSRC with the accumula-
tor. Set the appropriate floating point condition
codes. FSRJC and accumulator are left unchanged
(see special comment below).

If FIUV is enabled, trap on —0 occurs before execu-
tion.

These instructions are exact.

An operand which has a biased exponent of zero is
treated as if it were true zero. If both operands have
biased exponents of zero, the accumulator gets a
true zero and, hence, may be modified.

Condition
Code Operation Codes
174(AC + If EXP(FSRC) =0, FC<0
4)FSRC AC < (AC):instruc- FV < 1if over-

tion is aborted. flow occurs, else
If EXP(AC) = 0, AC FV<0

<«exact 0. FZ<1if

For all other cases, EXP(AC) =0,
let QUOT = else FZ<0
(AC)/(FSRC): FN<1if (AC) <
If underflow occurs 0,elseFN <0

and FIU is not en-
abled AC < exact 0.
For all remaining
cases, AC < QUOT.

If either operand has a biased exponent of 0, it is
treated as an exact 0. For FSRC this would imply
division by zero; in this case the instruction is abort-
ed, the FEC register is set to 4, and an interrupt
occurs. Otherwise the quotient is developed to single
or double precision with enough guard bits for cor-
rect rounding. The quotient is rounded or chopped
in accordance with the values of the FD and FT bits
in the FPS register. The result is stored in AC except
for:

e overflow with interrupt disabled

e underflow with interrupt disabled
For these exceptional cases, an exact 0 is stored in

accumulator.
263

Interrupts:

Accuracy:

Special
Comments:

Mnemonic/
Name

LDCDF

LDCFD

Load and Con-

vert from Dou-

ble to Floating

or from Float-

ing to Double

Description:

FLOATING POINT PROCESSORS

If FIUV is enabled, trap on —0 in FSRC occurs before
execution.

If EXP(FSRC) = 0, interrupt traps on attempt to di-
vide by 0.

If overflow or underflow occurs and if the corres-
ponding interrupt is enabled, the trap occurs with
the faulty results in AC. The fractional parts are cor-
rectly stored. The exponent part is too small by 400
octal for overflow. It is too large by 400 octal for
underflow, except for the special case of 0, which is
correct.

Errors due to overflow, underflow, and division by 0
are described above. If none of these occurs, the
error in the quotient will be bounded by 1 LSB in
chopping mode and by 2 LSB in rounding mode.

The undefined variable —0 can occur only in
conjunction with overflow or underflow. It will be
stored in AC only if the corresponding interrupt is
enabled.

Condition
Code Operation Codes
177(AC+4) If EXP(FSRC) =0, FC <0
FSRC AC <exact0 FV <1 if conver-

IfFFD=1,FT =0,
FIV = 0 and round-

sion produces
overflow, else

ing causes overflow, FV <0

AC < exact 0. FZ <1if (AC) =
In all other cases AC 0,else FZ <0
<Gy (FSRC), FN <1 if (AC) <

where Gy specifies 0,else FN <0
conversion from

floating mode x to

floating modey.

x=D,y=FifFD =

0 (single)

x=F,y=DifFD =

1 (double)

If the current mode is floating mode (FD = 0), the

source is assumed to be a double precision number

and is converted to single precision. If the floating
chop bit (FT) is set, the number is chopped, other-
wise the number is rounded.

264

Interrupts:

Accuracy:

Special
Comment:

Mnemonic/
Name

LDCIF, LDCID
LDCLF,
LDCLD

Load and
Convert Integ-
eror Long In-
teger to Float-
ing or Double
Precision

Description:

FLOATING POINT PROCESSORS

If the current mode is double mode (FD = 1), the -
source is assumed to be a single-precision number,
and is loaded left-justified in the AC. The lower half
of the AC is cleared.

If FIUV is enabled, trap on —0 occurs before execu-
tion.

Overflow cannot occur for LDCFD.

A trap occurs if FIV is enabled, and if rounding with

LDCDF causes overflow; AC < overflowed result of
conversion. This result must be +0 or —0.

Underflow cannot occur.

LDCFD is an exact instruction. Except for overflow,
described above, LDCDF incurs an error bounded
by one LSB in chopping mode, and by ¥ LSBin
rounding mode.

If (FSRC) = —0, the FZ and FN bits are both set
regardless of the condition of FIUV.

Condition
Code Operation Codes

177ACSRC AC < Cix(SRC), FC <0

where FV<0

Gix specifies con- FZ<11f (AC) =

version frominteger 0, else FZ <0

mode j to floating FN < 11f (AC) <

mode X; 0,else FN <0

j=1ifFL=0,j=1L

if FL =1,

x=FifFD=0,x=

DifFD =1

Conversion is performed on the contents of SRC
from a 2’s complement integer with precision jtoa
floating point number of precision x. Note that j and x
are determined by the state of the mode bits FL and
FD:j=lorL,andx = ForD.

If a 32-bit integer is specified (L mode) and (SRC)
has an addressing mode of 0, or immediate address-
ing mode is specified, the 16 bits of the source regis-
ter are left-justified and the remaining 16 bits loaded
with zeros before conversion.

265

Interrupts:

Accuracy:

Mnemonic/
Name
LDEXP
Load Expo-
nent

FLOATING POINT PROCESSORS

In the case of LDCLF, the fractional part of the float-
ing point representation is chopped or rounded to 24

bits for FT = 1 and 0 respectively.

None: SRC is not floating point, so trap on —0 cannot

occur.

Overflow and underflow cannot occur.

LDCIF, LDCID, and LDCD are exact instructions. The
errorincurred by LDCLF is bounded by 1 LSB in
chopping mode, and by 2 LSB in rounding mode.

Code
176(AC+4)
SRC

Operation
NOTE: 177 and 200,
appearing below,
are octal numbers.

I[f —200<SRC< 200,
EXP(AC) <(SRC) +
200 and the rest of
AC is unchanged.

If SRC>177 and FIV
is enabled,
EXP(AC) <(SRC)
<6:0> on FP11-C,
EXP(AC) <«
((SRC)+ 200) <7:
0> onFP11-A,
FP11-E.

If SRC>177 and FIV
is disabled, AC <
exact 0.

If SRC. <—177 and
FIU is disabled, AC
< exact 0.

If SRC <—177 and
FIU is enabled,
EXP(AC) <(SRC)
<6:0> on FP11-C,
EXP(AC) < ((SRC)
+ 200) <7:0> on
FP11-A, FP11-E.

266

Condition
Codes

FC <0.
FV<1if
SRC>177, else
FV<«o0.
FZ < 1if
EXP(AC)=0, else
FZ < 0.
FN <1 if
(AC)<0, else FN

<«0.

-

Description

Interrupts:

Accuracy:

Mnemonic/
Name

LDF

LDD

Load Float-
ing/Double

Description:

Interrupts:

Accuracy:
Special
Comment:

FLOATING POINT PROCESSORS

Change AC so that its unbiased exponent = (SRC).
That is, convert (SRC) from 2’s complement to ex-
cess 200 notation, and insert in the EXP field of AC.
This is a meaningful operation only if
ABS(SRC)<177.

If SRC <—177, result is treated as overflow. If
SRC<177, result is treated as underflow. Note that
the FP11-C and FP11-A do not treat these abnormal '
conditions in exactly the same way.

No trap on —0in AC occurs, even if FIUV enabled.
If SRC > 177 and FIV enabled, trap on overflow will
occur.

If SRC < —177 and FIU enabled, trap on underflow
will occur.

The answers returned by the FP11-C, FP11-E, and
FP11-A differ for overflow and underflow conditions.

Errors due to overflow and underflow are described
above. If EXP(AC)=0and SRC # —200, (AC)
changes from a floating point number treated as 0 by
all floating arithmetic operations to a non-zero num-
ber. This is because the insertion of the “hidden” bit
in the hardware implementation of arithmetic in-
structions is triggered by a non-vanishing value of
EXP.

Condition
Code Operation Codes

172(AC+4) AC < (FSRC) FC <0

FSRC FV<0
FZ<1if (AC) =
0,else FZ<0
FN<1if (AC) <
0,else FN <0

Load single or double precision number into accu-
mulator.

If FIUV is enabled, trap on —0 occurs before AC is
loaded. Neither overflow nor underflow can occur.

These instructions are exact and permit use of —0in
a subsequent floating point instruction if FIUV is not
enabled and (FSRC) = —0. if (FSRC) = —0, the FZ
and FN bits are both set, regardless of the condition
of FIUV. 267

Mnemonic/
Name

LDFPS

Load FPP's
Program Stat-
us

Description:

Special
Comment:

Mnemonic/
Name

MODF

MODD
Multiply and
Integerize Flo-
ing/Double

Description and
Operation:

1701SRC

171(AC+4)

FLOATING POINT PROCESSORS

Condition

Code Operation Codes

FPS < (SRC)

Load FPP’s status from SRC.

On the FP11-C, bits 13 and 12 are ignored. Bit 4 can
be set if the CPU is in kernel mode.

Onthe FP11-A, the FPS is loaded with the source.
The user is cautioned not to use bits 12 and 13 (in
FP11-C, FP11-E, and the FP1 1-A) or bit 4 (in the
FP11-A) for a special purpose since these bits are
not recoverable by the STFPS instruction.

Condition
Codes

FC<«0
FV < 1if PROD
overflows, else
FV<0
FZ < 1if(AC) =
O,else FZ<«0
FN < if (AC) <0,
else FN <0

Code Operation
See below

FSRC

This instruction generates the product of its two float
ing point operands, separates the product into in-
teger and fractional parts and then stores one or
both parts as floating point numbers.

Let PROD = (AC)*(FSRC) so that in:
Floating point: ABS(PROD) = (2**K)*f
where "2.LE.f.LT.1 and

EXP(PROD) = (200+K) octal

Fixed Point binary: PROD = N + g, with

N = INT(PROD)=the integer part of PROD
and

g = PROD — INT(PROD) = the fractional part of
PROD with 0<g<1

Both N and g have the same sign as PROD.
They are returned as follows:

268

FLOATING POINT PROCESSORS

If AC is an even-numbered accumulator (0 or 2), N is
stored in AC + 1 (1 or 3), and g is stored in AC.

If AC is an odd-numbered accumulator, N is not
stored, and g is stored in AC.

The two statements above can be combined as fol-
lows: N is returned to ACv1 and g is returned to AC,
where v means .OR.
Five special cases occur, as indicated in the follow-
ing formal description with L = 56 for Double Mode:
1. If PROD overflows and FIV enabled:

ACv1 < N, chopped to L bits, AC < exact 0.

Note that EXP(N) is too small by 400 (octal), and
that < 0 can get stored in ACv1.

If FIV is not enabled: ACv1 < exact 0, AC < exact
0, and —0 will never be stored.

2. If 2**L<ABS(PROD) and no overflow:
ACv1 < N, chopped to L bits, AC < exact 0.
The sign and EXP of N are correct, but low order
bit information, such as parity, is lost.

3. If 1<ABS(PROD)<2**L:
ACvi < N,AC<g

The integer part N is exact. The fractional part g is
normalized, and chopped or rounded in accor-
dance with FT. Rounding may cause return of &
unity for the fractional part. For L = 24, the error
in g is bounded by 1 LSB in chopping mode and
by % LSB in rounding mode. For L=586, the error
in g increases from the above limits as ABS(N)
increases above 3 because only 59 bits of PROD
are generated:

if 2**p<ABS(N)<2**(p + 1), with p > 2,

the low order p — 2 bits of g may be in error.
4. If ABS (PROD)<1 and no underflow:

ACv1 <exact0 AC<g

There is no error in the integer part. The error in
the fractional part is bounded by 1 LSB in chop-
ping mode and 2 LSB in rounding mode. Round-
ing may cause a return of =+ unity for the fractional

part. 269

FLOATING POINT PROCESSORS

5. If PROD underflows and FIU enabled:
ACvl <exact0AC «g

Errors are as in Case 4, except that EXP(AC) will
be too large by 400 octal (except if EXP = 0, itis
correct). Interrupt will occur and —0 can be stored
in AC.

IF FIU is not enabled, ACv1 < exact 0 and AC <
exact 0. For this case the error in the fractional
partis less than 2**(—128).

Interrupts: If FIUV is enabled, trap on —0 in FSRC will occur
before execution.
Overflow and underflow are discussed above. ;

Accuracy: Discussed above.
Applications: 1. Binary to decimal conversion of a proper fraction:

the following algorithm, using MOD, will generate
decimal digits D(1), D(2) ... from left to right:

Initialize: <0
X <-number to be
converted:
ABS(X) < 1

While X # 0 do

Begin PROD <« X*10;
l<1+1;

D(l) < INT(PROD);

X< PROD — INT(PROD);

END;
This algorithm is'exact; it is case 3 in the descrip-
tion: the number of non-vanishing bits in the frac-
tional part of PROD never exceeds L, and hence
neither chopping nor rounding can introduce er-
ror.

2. Toreduce the argument of a trigonometric func-

tion.
ARG*2/Pl = N + g. The low two bits of N identify
the quadrant, and g is the argument reduced to
the first quadrant. The accuracy of N + g is limit-
ed to L bits because of the factor 2/PI. The
accuracy of the reduced argument thus depends
on the size of N.

270

Mnemonic/
Name

MULF

MULD
Multiply Float-
ing Double

Description:

Interrupts:

FLOATING POINT PROCESSORS

. To evaluate the exponential function e**x, obtain

x*(log e base 2) =N + g.

Then e**x = (2**N)* (e**(g*1n 2))

The reduced argument is g*1n2<1 and the factor
2**N is an exact power of 2, which may be scaled
in at the end via STEXP, ADD N to EXP and
LDEXP. The accuracy of N + g is limited to L bits
because of the factor (log e base 2). The accuracy
of the reduced argument thus depends on the
size of N.

Condition
Code Operation Codes
171AC- Let PROD = (AC)* FC <«0.
FSRC (FSRC) FV <« 1if over-
If underflow occurs flow occurs, else
and FlU is not en- FV<0
abled, AC < exact FZ < 1if (AC) =
0. 0,elseFZ<0
If overflow occurs FN <1if (AC) <
0,else FN <0

and FIV is noten-
abled, AC < exact
0.

For all other cases
AC < PROD

If the biased exponent of either operand is zero, (AC)
< exact 0. For all other cases PROD is generated to
48 bits for floating mode and 59 bits for double
mode. The product is rounded or chopped for FT =
0 and 1, respectively, and is stored in AC except for
e overflow with interrupt disabled

e underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in
accumulator.

If FIUV is enabled, trap on —0 occurs before execu-
tion.

If overflow or underflow occurs and if the corres-
ponding interrupt is enabled, the trap occurs with
the faulty results in AC. The fractional parts are cor-
rectly stored. The exponent part is too small by 400
octal for underflow, except for the special case of 0,
which is correct.

271

Accuracy:

Special
Comment:

Mnemonic/
Name

NEGF

NEGD
Negate Float-
ing/Double

Description:

Interrupts:

Accuracy:

Special
Comment:

Mnemonic/
Name
SETF
Set Floating
Mode

Description:

Mnemonic/
Name

SETD

Set Floating
Double Mode

FLOATING POINT PROCESSORS

Errors due to overflow and underflow are described

above. If neither occurs, the error incurred is bound-
ed by 1 LSB in chopping mode and 2 LSB in round-
ing mode.

The undefined variable —0 ¢an occur only in
conjunction with overflow or underflow. It will be
stored in AC only if corresponding interrupt is en-
abled.

Condition
Code Operation Codes
1707FDST FDST < —(FDST)if FC <0.
EXP(FDST) #0,else FV <«0.
FDST < exact 0. FZ<1If
EXP(FDST) = 0,
else FZ<0.
FN <1 If (FDST)
< 0, else FN <-0.

Negate single or double precision number, store re-
sultin same location. (FDST)

If FIUV is enabled, trap on —0 occurs after execution.
Neither overflow nor underflow can occur.

These instructions are exact.

If a —0 is present in memory and the FIUV bit is
enabled, then the FP11-E and the integral floating
point unit store exact 0 in memory (zero exponent,
zero fraction, and positive sign). The condition code
reflects an exact 0 (FZ < 1).

Condition
Code Operation Codes
170001 FD <0
Set the FPP in single precision mode.
Condition
Code Operation Codes

170011 FD <1

272

Description:

Mnemonic/
Name

SETI

Set Integer
Mode

Description:

Mnemonic/
Name
SETL
SetLong In-
teger Mode

Description

Mnemonic/
Name
STCFD
STCDF
Store and
convert from
Floating to
Double or
from Double
to Floating

Description:

FLOATING POINT PROCESSORS

Set the FPP in double precision mode.

Code
170002

Operation
FL<0

Set the FPP for integer data.

Code
170012

Operation
FL <1

Set the FPP for long integer data.

Code Operation
176AC- If EXP(AC) = 0,
FDST FDST <0 and

rounding causes
overflow, FDST <«
exact 0.

In all other cases,
FDST < Gy (AC),
where

Cxy specifies con-
version from float-
ing mode x

to floating mode y:
x=Fandy=Dif

FD =0,
x=Dandy=Fif
FD = 1.

Condition
Codes

Condition
Codes

Condition
Codes

FC <0.
FV <1 If conver-
sion produces
overflow else
FV <0.
FZ<11f (AC) =
0,else FZ < 0.
FN<1I1f (AC) <
0, else FN < Q.

If the current mode is single precision, the accumu-
lator is stored left-justified in FDST and the lower
half is cleared. If the current mode is double preci-
sion, the contents of the accumulator are converted
to single precision, chopped or rounded depending
on the state of FT, and stored in FDST.

273

FLOATING POINT PROCESSORS

Interrupts: Trap on —0 will not occur even if FIUV is enabled
because FSRC is an accumulator.
Underflow cannot occur.
Overflow cannot occur for STCFD.
A trap occurs if FIV is enabled, and if rounding with
STCDF causes overflow; FDST < overflowed result
of conversion. This result must be +0 or —0.
Accuracy: STCFD is an exact instruction. Except for overflow,
described above, STCDF incurs an error bounded
by 1 LSB in chopping mode and 2 LSB in rounding
mode.
Mnemonic/ Condition
Name Code Operation Codes
STCFI 175(AC + DST « G (AC) if — C<FC<«0if —
STCFL 4)DST JL — 1<CXffi(AC) < JL — 1 < CXffi
STCDI JL+1, (AC) < JL + 1,
STCDL else DST <0, else FC < 1.
Store and where G specifies V<FV<0.
Convert from conversion from Z<—FZ<1if
Floating or floating mode x to (DST) = 0, else
Double to In- integer mode j: FZ<0.
teger or Long j=lifFL=0,j=Lif N < FN <« 1if
Integer FL=1, (DST) <0, else
x=FifFD=0,x = FN <0.
Dif FD = 1.
JLis the largest in-
teger:
2**15 —1forFL=0
2**31—1forFL=1
Description: Conversion is performed from a floating point repre-

sentation of the data in the accumulator to an integer
representation. '

If the conversion is to a 32-bit word (L mode) and an
address mode of 0, or immediate addressing mode,
is specified, only the most significant 16 bits are
stored in the destination register.

If the operation is out of the integer range selected
by FL, FC is set to 1 and the contents of the DST are
setto 0.

274

N

N

Interrupts:

Accuracy:

Mnemonic/
Name
STEXP
Store Expo-
nent

Description:

Interrupts:

Accuracy:

Mnemonic/
Name

STF

STD

Store
Floating Dou-
ble

175ACDST

174AC-

FLOATING POINT PROCESSORS

Numbers to be converted are always chopped (rath-

er than rounded) before conversion. This is true
even when the chop mode bit, FT, is cleared in the
floating point status register.

These instructions do notinterrupt if FIUV is en-
abled, because the —0, if present, is in AC, notin
memory.

If FIC is enabled, trap on conversion failure will oc-
cur.

These instructions store the integer part of the float-
ing point operand, which may not be the integer
most closely approximating the operand. They are
exact if the integer part is within the range implied by
FL.

Condition
Codes -

C<FC<0.
V< FV<0.
Z<—FZ<1if
(DST) = 0, else
FZ <« 0.
N<«<FN <« 1if
(DST) <0, else
FN<0.

Code Operation
DST <« EXP(AC)—
200 octal

Convert accumulator’s exponent from excess 200
octal notation to 2’s complement, and store result in
DST.

This instruction will not trap on —0.
Overflow and underflow cannot occur.

This instruction is always exact.

Condition
Code Operation Codes
FDST <« (AC) FC<FC
FDST FV «<FV

FZ «FZ

FN < FN

275

Description:

Interrupts:

Accuracy:

Special
Comment:

Mnemonic/
Name

STFPS

Store FPP’'s
Program Stat-
us

Description:

Special
Comment:

Mnemonic/
Name
STST

Store FPP’s
Status

Description:

1702DST

1703DST

FLOATING POINT PROCESSORS

Store single or double precision number from accu-
mulator.

These instructions do not interrupt if FIUV enabled;
because the —0, if present, is in AC, not in memory.
Neither overflow nor underflow can occur.

These instructions are exact.

These instructions permit storage of a —0.in memory
from AC. Note, however, that the FPP can storea —0
in an AC only if it occurs in conjunction with overflow
or underflow, and if the corresponding interrupt is
enabled. Thus, the user has an opportunity to clear
the —0, if he wishes.

_ Condition
Code Operation Codes

DST < (FPS)

Store FPP’s status in DST.

On the FP11-C, FP11-E, and FP11-A, bits 13 and 12
are loaded with zeros. All other bits (with the excep-
tion of bit 4 in the FP11-A) represent the correspond-
ing bits in the FPS. The FP11-A has no maintenance
mode so bit 4 is loaded with zero.

Condition
Code Operation Codes
DST <« (FEC)

DST + 2 < (FEA)

Store the FEC and then the FPP’s exception address
pointer in DST and DST + 2.

NOTES:
1. If destination mode specifies a general register or
immediate addressing, only the FEC is saved.

276

Mnemonic/
Name

SUBF

SUBD
Subtract
Floating Dou-
ble

Description:

Interrupts:

Accuracy:

FLOATING POINT PROCESSORS

2. The information in these registers is current only
if the most recently executed floating point in-
structions (refer to Section 11.6) caused a floating
point exception.

Condition
Code Operation Codes
173AC- Let DIFF = (AC) — FC <0.

FSRC (FSRC): FV <« 1if over-
If underflow occurs flow occurs, else
and FIU is noten- FV <o.
abled, AC < exact FZ<1if (AC) =
0. 0,else FZ<«0.
If overflow occurs FN < 1if (AC) <
and FIV is noten- 0, else FN < 0.
abled, AC < exact
0.

For all other cases,
AC < DIFF.

Subtract the contents of FSRC from the contents of
AC. The subtraction is carried out in single or double
precision and is rounded or chopped in accordance
with the values of the FD and FT bits in the FPS
register. The result is stored in AC except for:

e overflow with interrupt disabled
e underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in
AC.

If FIUV is enabled, trap on —0in FSRC occurs before
execution.

If overflow or underflow occurs and if the corres-
ponding interrupt is enabled, the trap occurs with
the faulty results in AC. The fractional parts are cor-
rectly stored. The exponent part is too small by 400
octal for overflow. It is too large by 400 octal for
underflow, except for the special case of 0, which is
correct.

Errors due to overflow and underflow are described
above. If neither occurs, then for like-signed oper-

277

Special
Comment:

Mnemonic/
Name
TSTF

TSTD

Test Float-
ing/Double

Description:

Interrupts:
Accuracy:

Special
Comment:

1705FDST

FLOATING POINT PROCESSORS

ands with exponent difference of 0 or 1, the answer
returned is exact if a loss of significance of more
than one bit can occur. Note that these are the only
cases for which loss of significance of more than one
bit can occur. For all other cases the result is inexact
with error bounds of:

1LSB in chopping mode with either single or double
precision.

2 LSB in rounding mode with single precision.

3/4LSB (FP11-C and FP11-E) and 33/64 LSB (FP11-
A) in rounding mode with double precision.

The undefined variable —0 can occur only in con-
junction with overflow or underflow. It will be stored
in the AC only if the corresponding interrupt is
enabled.

Condition
Codes

FC «0.
FV <«0.
FZ<1if
EXP(FDST) =0,
else FZ < 0.
FN < 1if (FDST)
<0, else Fn «0.

Code Operation
FDST < (FDST)

Set the floating point processor’s condition codes
according to the contents of FDST.

If FIUV is set, trap on —0 occurs after execution
These instructions are exact.

This instruction does not write to the destination.

FLOATING POINT PROCESSOR TIMING

The timing and the processes for determining the timing of the floating
point instruction vary with each processor. The following sections ex-
plain specifically the instruction time and the calculation methods for
FP11-A, FP11-C, and FP11-E.

The following table summarizes the floating point execution time of the
FP11-A, FP11-E, and FP11-C.

278

T

|

FLOATING POINT PROCESSORS

Table 10-1 Comparison of Floating Point Processor Instruction
Timing (sec)

Operation 11/34 11/55/45 11/60
(register-to-register) FP11-A FP11-C FP11-E
Single Precision

Add/Subtract 8.91 1.65 1.02.
Multiply 16.2 3.27 1.53
Divide 16.2 4.29 7.00
Double Precision

Add/Subtract 8.91 1.68 1.02
Multiply 25.36 5.43 3.74
Divide 35.36 6.73 12.75

FLOATING POINT INSTRUCTION TIMING: FP11-A

Instruction Execution Time

The execution time of an FP11-A floating point instruction is depen-
dent on the following conditions:

etype of instruction

etype of addressing mode specified

etype of memory

ememory management facility enabled or disabled‘

Additionally, the execution time of certain instructions, such as Add, is
dependent on the data.

Table 10-2 provides the basic instruction times for mode 0. Tables 10-

3 through 10-7 show the additional time required for instructions other

than mode 0. For example, to calculate the execution time of a MULF

(single-precision multiply) for mode 3 (autoincrement deferred) with

the result to be rounded:

1. Refer to Table 10-2 which gives MULF, mode 0, execution time of
13.4 useconds.

2. Refer to Note 1 as specified in the notes column of Table 10-2. Note
1 specifies an additional 0.84 useconds is to be added if rounding
mode is specified. This yields 14.24 useconds.

3. The modes 1-7 column of Table 10-2 refers to Table 10-3 to deter-
mine the additional time required for mode 1 through 7 instruc-
tions. In this example, mode 3 specifies an additional 3 useconds
for single precision yielding 17.34 useconds.

All timing information is in microseconds unless otherwise noted.
Times are typical; processor timing can vary + 10%.

279

FLOATING POINT PROCESSORS

NOTE: Add .13 useconds for each memory cycle if
MS11-JP MOS memory is utilized. Add .12 useconds
for each DATI memory cycle if memory management

is enabled.

Table 10-2 FP11-A Instruction Execution Times

Mode 0
(Reg.

Instr. to Reg.) Notes Modes 1 thru7
LDF 4.0
LDD 4.0
LDCFD 5.8 1
LDCDF 5.8 1
CMPF 5.5
CMPD 5.5
DIVF 13.3 1 Use Table 10-3
DIVD 20.6 1 to determine
ADDF 7.5 1,2 memory-to-register times
ADDD 7.5 1,2 for these instructions
SUBF 7.9 1,2
SUBD 7.9 1,2
MULF 13.4 1
MULD 20.7 1
MODF 17.4 1,3
MODD 24.7 1,3
STF 2.4
STD 2.4 Use Table 10-4
STCDF 5.2 to determine
STCFD 5.2 memory-to-register times
CLRF 2.6 for these instructions
CLRD 2.6
ABSF 3.5
ABSD 3.5 Use Table 10-5
NEGF 3.6 to determine
NEGD 3.6 memory-to-memory times
TSTF 3.6 for these instructions
TSTD 3.6

280

FLOATING POINT PROCESSORS

LDFPS 2.5

LDEXP 4.4 Use Table 10-6

LDCIF 7.5 1,4 to determine

LDCID 7.5 1,4 memory-to-register times
LDCLF 7.5 1,4 for these instructions
LDCLD 7.5 1,4

STFPS . 2.8 .

STST 2.6 Use Table 10-7

STEXP 3.4 to determine

LSTCFI 4.5 5 register-to-memory times
STCDI 45 5 for these instructions
STCFL 4.5 5

STCDL 4.5 5

The following instructions do not reference memory

CFCC 2.0

SETF 2.2

SETD 2.2 Execution times

SETI 2.2 are as shown

SETL 2.2

Table 10-3 Floating Source Fetch Time

Memory Cycles Time(us)
Addressing Single Double Single Double
Mode Precision Precision Precision Precision
1 2 4 2.00 4.20
2 2 4 2.20 4.40
2 Immediate 1 1 1.00 1.00
3 3 5 3.00 5.20
4 2 4 2.20 4.40
5 3 5 3.00 5.20
6 3 5 3.20 5.40
7 4 6 4.20 6.40

281

FLOATING POINT PROCESSORS

Table 10-4 Floating Destination Store Time

Memory Cycles Time(us)
Addressing Single Double Single Double
Mode Precision Precision Precision Precision
1 2 4 1.38 2.94
2 2 4 1.56 3.12
2 Immediate 1 1 0.60 0.60
3 3 5 2.38 3.94
4 2 4 1.56 3.12
5 3 5 2.38 3.94
6 3 5 2.56 412
7 4 6 3.56 5.12

Table 10-5 Floating Destination Fetch And Store Time

Memory Cycles Time(us)
Addressing Single Double Single Double
Mode Precision Precision Precision Precision
1 2 2 1.42 1.42
2 2 2 1.60 1.60
2 Immediate 2 2 1.60 1.60
3 3 3 2.42 2.42
4 2 2 1.60 1.60
5 3 3 2.60 2.60
6 3 3 2.60 2.60
7 4 4 3.60 3.60

282

ll

A

FLOATING POINT PROCESSORS

Table 10-6 Source Fetch Time

Memory Cycles Time(us)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision
1 1 2 1.00 1.18
2 1 2 1.18 1.36
2 Immediate 1 1 1.18 1.18
3 2 3 2.00 2.18
4 1 2 1.18 1.36
5 2 3 2.00 2.18
6 2 3 2.18 2.36
7 3 4 3.18 3.36
Table 10-7 Destination Store Time
Memory Cycles Time(us)
Addressing Single Double Single Double
Mode Precision Precision Precision Precision
1 1 2 0.60 1.38
2 1 2 0.96 1.68
2 Immediate 1 1 0.96 0.96
3 2 3 1.60 2.38
4 1 2 0.96 1.68
5 2 3 1.60 2.38
6 2 3 1.78 2.56
7 3 4 2.78 3.56
NOTES:

e Add 0.84 useconds when in rounding mode (FT = 0).

e Add 0.24 useconds per shift to align binary points and 0.24 useconds
per shift for normalization. The number of alignment shifts is equal to
the exponent difference for exponent differences bounded as fol-
lows:

283

FLOATING POINT PROCESSORS

1<|EXP (AC) — EXP (FSRC)|< 24 single precision

1<|EXP (AC) — EXP (FSRC)|< 56 double precision

The number of shifts required for normalization is equivalent to the
number of leading zeros of the result.

eAdd .24 useconds times the exponéent of the product if the exponent
of the product is:
1<EXP (PRODUCT)< 24 single precision
1<EXP (PRODUCT)< 56 double precision

Add 0.24 useconds per shift for normalization of the fractional result.
The number of shifts required for normalization is equivalent to the
number of leading zeros in the fractional result.

eAdd 0.24 useconds per shift for normalization of the integer being
converted to a floating point number. For positive integers, the num-
ber of shifts required to normalize is equivalent to the number of
leading zeros; for negative integers, the number of shifts required for
normalization is equivalent to the number of leading ones.

e Add 0.24 useconds per shift to convert the fraction and exponent to
integer form, where the number of shifts is equivalent to 16 minus the
exponent when converting to short integer or 32 minus the exponent
when converting to long integer for exponents bounded as follows:

1 < EXP (AC) < 15 shortinteger
1 < EXP (AC) < 31 long integer

FLOATING POINT INSTRUCTION TIMING: FP11-C

Floating point instruction times are calculated in a manner similar to
the calculation of CPU instruction timing. Since the FP11-C is a separ-
ate processor operating in parallel with the main processor, however,
the calculation of floating point instruction times must take this paraliel
processing or overlap into account. The following is a description of
the method used to calculate the effective floating point instruction
execution times.

TERM DEFINITION

Instruction Decode CPU time required to decode a floating

Preinteraction Time point instruction OP Code and to store the
general register referred to in the floating
pointinstructionin atemporary floating
point register (FPR). This time is fixed at 450
ns.

284

FLOATING POINT PROCESSORS

Address Calculation
Time

Wait Time

(Load Class Instruc-
tions)

(Store Class Instruc-
tions)

Resync Time

Interaction Time

Argument Transfer
Time

CPU time required to calculate the address
of the operand. This time is dependent on
the addressing mode specified. Refer to Ta-
ble 10-8-

CPU time spent waiting for completion by
the floating point processor of a previous
floating point instruction, in the case of load
class instructions. For store class instruc-
tions, the wait time is the sum of time during
which the floating point completes a previ-
ous floating point instruction and floating
point execution time for the store class in-
struction. Wait time is calculated as follows:

Wait time = [floating point execution time
(previous FP instruction)] — [disengage and
fetch time (previous FP instruction)] —
[CPU execution time for interposing non-
floating point instruction] — [preinteraction
time] — [address calculation time]. If the re-
sultis < 0, the wait time is 0.

Wait time = floating point execution time
(previous floating point instruction) — [CPU
execution time for interposing non-FP in-
struction] — disengage and fetch time
(previous FP instruction)] — [preinteraction]
+ floating point execution time] — [address
calculation time]. If the resultis < 0, the wait
time is zero.

If the CPU must wait for the floating point
processor (i.e., wait time = 0), an additional
450ns must be added to the effective exe-
cution time of the instruction. If wait time =
0, then resync time =0.

CPU time required actually to initiate float-
ing point processor operation.

CPU time required to fetch and transfer to
the floating point processor the required
operand. This time is 300 ns X the number
of 16-bit words read from memory (load
class floating point instructions), or 1200 ns
X the number of 16-bit words written to
memory (store class instructions).

285

FLOATING POINT PROCESSORS

Disengage and Fetch
Time

Floating Point Execu-
tion Time

Effective Execution
Time

CPU time required to fetch the next instruc-
tion from memory. This time is 300 ns.

Time required by the floating point proces-
sor to complete a floating point instruction
once it has received all arguments (load
class instructions). Execution times are
contained in Tables 10-2 through 10-7.

Total CPU time required to execute a float-
ing point instruction.

Effective Execution Time = Preinteraction
+ Address Calculation + Wait Time + Re-
sync Time + Interaction Time + Argument
Transfer + Disengage and Fetch.

Table 10-8 Address Calculation Times

Address
Mode Calculation Time
nsec
0 0
1 300
2 300
3 600
4 300
5 750
6 600
7 1050
Table 10-9 FP11-C Execution Times
Instruction Minimum Maximum Typical
nsec nsec
LDF 360 360
LDD 360 360
ADDF 900 2520 950
ADDD 900 4140 980
SUBF 900 1980 1130
suBD 900 4140 1160
MULF 1800 3440 2520

286

i

INSTRUCTION FP11-A FP11-E FP11-C
MULD 3060 6220 4680
DIVF 1920 6720 3540
DIVD 3120 14400 6000
MODF 2880 5990
MODD 3780 9770
LDCFD 420 420
STF* 0
STD* 0
STCFD* 720 720 720
STCDF* 540 720 540
LDCIF 1260 1440 1440
LDCID 1260 1440 1440
LDCLF 1260 1980
LDCLD 1260 1980
LDEXP 540 900
STCFI* 1260 1620
STCFL* 1260 2160
STCDI* 1260 1620
STCDL* 1260 2160
STEXP* 360 360

MO Not MO

CLRD 180 2150
CLRD 180 14350
NEGF 360 2400
ABSF 360 2400
TSTF 180 180
TSTD 180 180
LDFPS 180 0
STFPS* 0

STST* 0

CFCC 0

SETF 180

SETD 180

SETI 180

SETL 180

* Store Class Instructions

287

FLOATING POINT PROCESSORS

Load class instructions are those which do not deposit results in a
memory location.

Execution of a load class floating point instruction by the floating point
occurs in parallel with CPU operation and can be overlapped. Figure
10-2 gives a simplified picture of how a load class floating point in-
struction is executed.

CPU FPP
T

T Load Class Instruction |
is fetched. This occurs

| during previous l

Effective | instruction execution. |

Execution Time _ |

starts here/’r Instruction is decoded. |

I

Contents of CPU General
Register are transferred | FPP is idle.
No Floating Point| | to temporary FPP Reg-

intervention yet ister.

is calculated.
Floating Point
must respond
(i.e., it must be
finished with
prior instruction >
by here — | CPU starts FPP execut-
or CPU will wait ing this instruction (i.e., | FPP interacts with CPU.
interacts with FPP).

|
|
|
< | Address of operand |
|
|
I
|

|/

—

CPU is finished CPU passes arguments FPP accepts arguments
with FPP; FPP to FPP from CPU.
will now execute €

instructions T
on its own/ Fetch next instruction. FPP

Effective 7 executes

Execution Time

ends here instruction.

L-<Floating Point is fin-
ished and ready to

accept next instruc-
tion.

Figure 10-2 Load Class Floating Point Instruction
288

FLOATING POINT PROCESSORS

Store class instructions are those which store a result from the floating
point into a memory location. Execution of a store class instruction by
the floating point processor must occur before the result can be
stored, hence parallel processing cannot occur for store class floatmg

point instructions.

CPU FPP

Effective
Execution Time
starts here

FPP must
respond or

A
CPU will wait—""| CPU waits for FPP to

Effective
Execution Time

is fetched. This occurs
during previous instruc-
tion execution.

Instruction is decoded.

Store Class Instruction T
|
|
|
|

| Contents of CPU |

General Register are [

stored in Temporary I

FPP Register. [

i Address at which result T

to be stored is calcu-
lated.

| complete execution.
L

| Since CPU entered Wait L

| State, an additional 450

| ns Resync overhead is |

FPP is idle.

FPP begins execution—
does not respond until
execution is complete.

«FPP responds.

| encountered. |
4 T
CPU interacts with FPP. |FPP interacts with CPU.
CPU stores FPP passes
result result to
in Memory. CPU to
store in
Memory.
T 1
CPU fetches
next instruction. | FPP is idle.
1

ends here —

Figure 10- 3 Store Class Floating Instruction

289

FLOATING POINT PROCESSORS

Figures 10-2 and 10-3 show how timing associated with a typical load
class and store class instruction is derived.

Figures 10-4 and 10-5 show how effective execution times for actual
floating point instructions in a program are calculated. Note that effec-
tive execution times are dependent on previous floating point instruc-
tions.

Referencing Figure 10-4, a sample calculation of effective time would
be:

for MULF (R0), AC1:

Effective execution time is the summation of the following:

Preinteraction Time 450 ns
Address Calculation Time (Mode 1 from Table 10-8) 300 ns
Wait Time (Since FPP is idle, Wait = 0) Ons
Resync Time (Since Wait = 0, Resync = 0) Ons
Interaction Time 300 ns
Argument Transfer Time (Transfer 2 words @ 300 ns/word)
600 nsDisengage

and Fetch Time 300 ns
Effective Execution Time 1950

for LDF X(R3),ACLO (Ref. Figure 10-4):

First we calculate Wait Time:
Wait Time = [Floating Point Execution

(previous FP instruction)(MULF)] 1800 ns

— [Disengage and Fetch Time

(previous FPT instruction)] - 300

— [Execution time of interposing

nonFPT instruction (SOB)] - 750

— [Preinteraction Time] — 450

— [Address Calculation (Mode 6 from

Table 10-8)] - 600
—300ns

Since calculation resulted in a negative
number, Wait Time = 0.

290

—

Jl

FLOATING POINT PROCESSORS

...so effective execution time is the summation of the following:

Preinteraction Time 450 ns
Address Calculation Time (Mode 6 from Table 10-8) 600 ns
Wait Time (From above calculation) Ons
Resync Time (Since Wait Time = 0, Resync = 0) .0ns
Interaction Time 300 ns
Argument Transfer Time (2 words @ 300 ns/word) 600 ns
Disengage and Fetch Time 300 ns

Effective Execution Time 2250 ns

FLOATING POINT INSTRUCTION TIMING: FP11-E

Floating point instruction times are calculated similarly to the calcula-
tion of CPU instruction timing. However, since the FP11-E is a separ-
ate processor, and its execution can proceed in parallel with the PDP-
11/60, calculation of floating point instruction times must take this
independent processing into account.

The following information describes the method used to calculate ef-
fective instruction execution times.

NOTE: Resync and interaction times presentin the
FP11-C are not considered, since handshaking syn-
chronization overhead has been eliminated by the
use of decoding and instruction fetch logic. In the
FP11-E, the fetching of floating point instruction is
initiated by the CPU, but is received simultaneously
by both processors.

In addition to instruction fetch and address calculation, the CPU con-
verts fixed to floating point notation and, in some instances, fully
executes the instruction, for example, LDFPS.

TERM DEFINITION

Instruction decode CPU time required to decode a floating
point instruction op code. This time is fixed
at 340 nsec.

Address calculation CPU time required to calculate the address

time of the operand. This time is dependent on
the addressing mode specified. Refer to Ta-
bles 10-11 and 10-12.

291

FLOATING POINT PROCESSORS

TERM DEFINITION

Wait time

(Load Class Instruc-
tions)

(Store Class Instruc-
tions) 7

Argument transfer time

Shared execution time

Disengage and fetch
time

CPU time spent waiting for completion by
the floating point processor of a previous
floating point instruction in the case of a
load class of instruction. For store class in-
structions, the wait time is the summation of
time during which the floating point proces-
sor completes a previous floating point in-
struction and floating point execution time
for store class instruction. Wait time is cal-
culated as follows:

Wait time = [floating point execution
(previous FPinstructions)] — [disengage
and fetch time] — [CPU execution time for
interposing non-floating point instruction] —
[Instruction fetch time] — [Address calcula-
tion time]. If the resultis < 0, the wait time is
0.

Wait Time = [Floating point execution time
(previous FP instruction)] — [Disengage and
fetch time] — [CPU execution time for inter-
posing non-floating point instruction] — [In-
struction fetch time] + [Floating point exe-
cution time] — [Address calculation time]. If
the resultis < 0, the wait time is 0.

CPU time required to fetch and transfer
operands. This time is 340 nsec X the num-
ber of 16-bit words read from memory or
1170 nsec X the number of 16-bit words
written into memory. Add 1.075 usec for a
word received from memory (MM-11D
memory only) that is a miss.

CPU time spent in the execution of integer
convert routines or any one of the instruc-
tions in category 5. Refer to Table 10-13.

Time required to fetch the next instruction
from memory. This time is fixed at 340 nsec
for a cache hit. Add 1.075 usec for a cache
miss (MM-11D).

292

i

FLOATING POINT PROCESSORS

Floating point execu-
tion time

Time required by the floating point proces-
sor to complete a floating point instruction
once it has received all operands (load
class). Refer to Table 10-14.

Effective execution Total CPU time required to execute a float-
time ing point instruction.
Effective execution time = instruction de-
code + address calculation + wait time +
arguement"transfer time + shared execution
time + disengage and fetch time .
Table 10-10 Floating Point Instructions
Category Instruction
LOAD LDF,LDD
CLASS ADF, ADD
SUBF, SUBD
MULF, MULD
DIVF, DIVD
MODF, MODD
LDCF, LDCD
CMPF, CMPD
LDCIF, LDCID
LDCLF,LDCLD
LOAD CLASS LDEXP
(INTEGER
CONVERT)
STORE CLASS STF, STD
STCDF
STCFD
STORE CLASS STCFI
(INTEGER STCFL
CONVERT) STCDI
STCDL
STEXP
NULL CLRF,CLRD Not MO
(CPU EXECUTES) NEGF, NEGD Not MO
ABSF, ABSD Not MO
TSTF, TSTD Not MO

293

FLOATING POINT PROCESSORS

Table 10-10 Floating Point Instructions, cont.

Category

Instruction

NULL

LDFPS
STFPS
STST

CFCC
SETF, SETD
SETI, SETL

Table 10-11 Address Calculation (Floating/Double)

Read
Memory

Mode Time (nsec) Cycle
0 0 0
1 510 0
2 510 0
3 850 1
4 850 0
5 1360 1
6 850 1
7 1360 2

Table 10-12 Address Calculation (integer)

Read
Memory

Mode Time (nsec) Cycle
0 340 0
1 340 0
2 340 0
3 850 1
4 510 0
5 1020 1
6 850 1
7 1360 2

294

-

FLOATING POINT PROCESSORS

Table 10-13 Shared Execution Time

Instruction Time (nsec)
CLRF 2210
CLRD (not MO) 2720
NEGF 3060
NEGD (Not MO) 3400
ABSF 3060
ABSD (Not MO) 3400
TSTF 3060
TSTD (Not MO) 3400
LDFPS 2040
STFPS 1360
STST 2550
CFCC 1020
SETD 1190
SETI 1360
SETD 1190
SETL 1360
STEXP 2210
LDEXP 1700

295

FLOATING POINT PROCESSORS

Table 10-14 FP11-E Execution Times (nsec)

Instruction MO M6 Not (MO or M6)
1.LDF 170 0 0
2.LDD 170 0 340
MO Not MO

Min. Max. Typical Min. Max. Typical

3.ADDF 340 1700 510 680 2040 850

4.ADDD 340 2890 680 1020 3570 1360

5.SUBF 340 1700 510 680 2040 850

6.SUBD 340 2890 680 1020 3570 1360

7.MULF 850 850 850 1020 1020 1020

8.MULD 3060 3060 3060 3570 3570 3570
9.DIVF 6120 6460 6290 6800
10.DIVD 11900 12410 12240 12580
11.MODF 3040 4250 3210 4420
12.MODD 5610 8500 6120 9010
*13.LDCFD 1700 1700 2040 2040
*14.LDCDF 2040 2040 2720 2730
15.8TF 170 170 510 510
16.STD 170 170 510 510
17.CMPF 170 850 340 1020
18.CMPD 170 850 680 1360
19.STCFD 680 850 1700 2210
20.STCDF 680 1020 1700 2550
21.LDCIF 7310 9860 7140 9520
22.LDCID 7310 9690 6970 9350
23.LDCLF 7480 10030 8500 13770
24.LDCLD 7310 9860 8330 13600
25.LDEXP 680 680 680 680
*26.STCFI 5270 7650 4930 7310
*27.STCFL 5270 10370 6800 11900
*28.STCDI 5270 7650 4930 7310
*29.8TCDL 5270 10370 6800 11900

30.STEXP 0 0

31.CLRF 170 0 0
32.CLRD 170 0 0
33.NEGF 340 0 0

* Requires CPU shared code execution. For Mode 0 address calculation, add 4

cycles.

296

—

e

FLOATING POINT PROCESSORS

MO Not MO
Min. Max. Typical Min. Max.
34.NEGD 340 0 0
35.ABSF 340 0
36.ABSD 340 0
37.TSTF 170 0
38.TSTD 170 0
39.LDFPS 0 0
40.8TFPS 0 0
41.8TST 0 0
42.CFCC 0 0
43.SETF 0 0
44 SETD 0 0
45.SETI 0 0
46.SETL 0 0

Table 10-15 Load Class of Instructions

CPU

Load class instruction is fetched.
This occurs during previous in-
struction execution.

Instruction is decoded.

Address of operands is calculat-
ed.

CPU passes operands to the
FP11-E.

Disengage and fetch next in-
struction.

Load class (integer convert) of in-
structions is fetched. This occurs
during previous instruction.

Instruction is decoded.

Address of operands is calculat-
ed and fetched from memory.

Integer conversion by CPU-
CPU passes result to FP11-E.

Disengage and fetch next in-
struction.

297

FP11-E

FP11-E decodes instruction and
goes into idle state.

FP11-E receives operands from
CPU.

FP11-E executes instruction.

FP11-E decodes instruction,
goes into idle state.

FP11-E receives result from CPU -

FP11-E stores results -

FLOATING POINT PROCESSORS

Table 10-16 Store Class of Instructions

CPU

Store class of instructions is
fetched. This occurs during
previous instruction.

Instruction is decoded.

Address of operands is calculat-
ed.

CPU waits for FP11-E to com-
plete execution.

CPU receives result from the
FP11-E and stores it in memory.

CPU fetches next instruction.

FP11-E
FP11-Eisidle.

FP11-E decodes instruction

FP11-E starts instruction execu-
tion.

FP11-E passes result to be
stored in memory.

FP11-Eisidle.

Table 10-17 Store Class of Instructions (Integer Convert)

CPU

Store class (integer convert) is
fetched. This occurs during
previous instructions.

Instruction is decoded.

CPU received floating point num-
ber from FP11-E.

Integer conversion performed by
CPU.

CPU does address calculation
and stores result in memory.

FP11-E
FP11-Eis idle.

FP11-E decodes instruction.

FP11-E passes floating point
number.

FP11-Eisidle.

Tables 10-8 and 10-9 show how effective execution times for actual
floating point instructions in a program are calculated. Note that the
effective execution times are dependent on previous floating point
instructions. Note also that all memory references are considered to

be cache hits.

298

-

FLOATING POINT PROCESSORS

for MULF (RO), AC1:

Instruction Fetch

Address Calculation Time (Mode 1 from Table 10-11)
Wait Time (Since FPP is idle, Wait = 0)

Argument Transfer Time

(Transfer 2 words @ 340 nsec/word)

Disengage and Fetch Time

Effective Execution Time

for LDF X (R3), ACO (Ref. Figure 10-5):

First, calculate Wait Time:

Wait Time = [Floating Point Execution
(previous FP instruction) (MULF)]
— [Disengage and Fetch Time
(previous FPT instruction)]
— [Execution Time of interposing
nonFPT instruction (SOB)

— [Instruction Fetch]
— [Address Calculation
(Mode 6 from Table 10-11)]

Since calculation resulted in a negative
number, Wait Time = 0.

340 nsec
510 nsec
0 nsec

680 nsec
340 nsec

1870 nsec

1020 nsec
— 340 nsec
—2400

nsec
— 340 nsec

— 850 nsec

—2910
nsec

_..so0 Effective Execution Time is the summation of the following:

Instruction Fetch

Address Calculation Time (Mode 6 from Table 10-11)
Wait Time (From above calculation)

Argument Transfer Time (2 words @ 340 nsec/word)
Disengage and Fetch Time

Effective Execution Time

299

340 nsec
850 nsec

0 nsec
680 nsec
340 nsec

2210 nsec

FLOATING POINT PROCESSORS

CPU TIME

]

MULF(RO), ACY
PRE INTERACTION

ADDRESS CALCULATION
INTERACTION

EFFECTIVE EXECUTION= 1950 nsec

ARGUMENT TRANSFER

DISENGAGE & FETCH

SOB RI

(NON FLOATING POINT INSTRUCTION)

LOF X(R3), ACO
PREINTERACTION

ADDRESS CALCULATION

EFFECTIVE EXECUTION=2250 nsec

INTERACTION

ARGUMENT TRANSFER

DISENGAGE & FETCH

Ny /)

ADDF AC2, ACI
PREINTERACTION

EFFECTIVE EXECUTION=1050nsec
INTERACTION

DISENGAGE & FETCH

IR DECODE
SETUP
TEMP

FPT REG
ADDRESS
CALC
{MODE 1)

INTERACTION

ARGUMENT
TRANSFER

DISENGAGE
& FETCH
NEXT INST.

EXECUTIVE
& FETCH
NEXT INST.

IR DECODE
SET UP

TEMP

FPT REG.
ADDRESS
CALC
(MOCE 6)

INTERACTION

ARGUMENT
TRANSFER

DISENGAGE
& FETCH

NEXT INST.
IR DECODE

INTERACTION
DISENGAGE
& FETCH
NEXT INST.

FPP TIME

—]

FLOATING
OINT

EXECUTION

(MULF)

}‘_\

-

FLOATING
POINT
EXECUTION
J (LOF)

FLOATING
POINT
EXECUTION
(ADDF)

Figure 10-4 Calculation of Effective Execution Times for Load Class

Instructions (FP11-C)
300

FLOATING POINT PROCESSORS

CPU TIME

MULF (RO), AC1

EFEECTIVE EXECUTION =1870 nsec

INSTRUCTION FETCH

ADDRESS CALCULATION

ARGUMENT TRANSFER

DISENGAGE & FETCH

SOB RI

(NON FLOATING POINT INSTRUCTION)

LOF X(R3),ACO

EFFECTIVE EXECUTION=2210nsec

PREINTERACTION

ADDRESS CALCULATION

ARGUMENT TRANSFER

DISENGAGE & FETCH

ADDF AC2, AC]

EFFECTIVE EXECUTION =1050 nsec

PREINTERACTION

DISENGAGE & FETCH

eV N e Ve N e Y

i

IR DECODE

ADDRESS
CALC
(MODE 1)

ARGUMENT
TRANSFER

DISENGAGE
& FETCH
NEXT INST.

EXECUTIVE
& FETCH
NEXT INST.

IR DECODE

ADDRESS
CALC
(MODE 6)

ARGUMENT
TRANSFER

DISENGAGE
& FETCH

NEXT INST.
IR DECODE

DISENGAGE
& FETCH
NEXT INST

FPP TIME
1

FLOATING
POINT
EXECUTION
(MULF)

i
.

}.7

[FLOATING
POINT

IN
EXECUTION

| (LOF)

— =

FLOATING
POINT
EXECUTION
(ADDF)

Figure 10-5 Calculation of Effective Execution Times for Load Class

301

Instructions (FP11-E)

1/O0 PAGE ADDRESSES
Device Address
AA11 776750
AA11 776400
ADO1 776770
ADF11 770460
AFC11 772570
AR11 770400
‘BM792-YA 773000
BM792-YB 773100
BM792-YC 773200
BM792-YH 773300
BM873-YA 773000
BM873-YB 773000
BM873-YC 773000
CD11 777160
CM11 777160
CR11 777160
DC11 774000
DC14-D 777360
DL11-A 777560
DL11-A 776500
DL11-B 777560
DL11-B 776500
DL11-C 775610
DL11-D 775610
DL11-E 775610
DL11-W 777546
DL11-W 777560
DL11-W 776500
DM11 775000
DM11-BB 770500
DN11-AA 775200
DN11-DA 775200
DP11 77440
DR11-A(1) 772470
DR11-A(2) 772460

APPENDIX A

UNIBUS ADDRESSES
Size in Number of
Words Devices

8 1

8 4

4 1

8 1

4 1

8 1
32 1
32 1
32 1
32 1
128 1
256 1
256 1
4 1

4 1

4 1

4 32

8 1

4 1

4 15

4 1

4 15

4 31

4 31

4 31

1 1

4 1

4 15

4 16

4 16

4 16

1 64

4 32

4 1

4 1

Device

DR11-A(3)
DR11-A(4)
DR11-B(1)
DR11-B(2)
DR11-B(3)
DR11-B(4)
DR11-C(1)
DR11-C(2)
DR11-C(3)
DR11-C(4)
DS11
DT11
DV11
DX11
FP11
GT40
ICR/ICS11
KE11
KG11
KL11
KL11
KT11
KT11-SR3
KW11-L
KW11-P
KW11-W
LP11
LP20
LPS11
LS11
LV11
M792
M9301-XX
M9301-XX
MM11-LP
MR11-DB
MS11-K
MS11-LP
NCV11
oSsT
PAG11
PA611

Address

772450
772440
772410
772430
772450
772470
772470
772460
772450
772440
775400
777420
775000
776200
772160
772000
771000
777300
770700
776500
777560
772200
772516
777546
772540
772400
777510
775400
770400
777510
777510
773000
765000
773000
772100
773100
772100
772100
772760
772500
772600
772700

A-2

Size in
Words

X o o
PRAPPOODPOOOO = NDADMDMAENMDIMDNAMNDRN

[«]

- W
APONPAEAPEADN

w
N

256
256

Number of
Devices

Ol OO N —= D e O D 00 = = b el b bk b ed el oa s

—

—

—_
i B @ > B o) B S o) TP AP N ¢ « JEEUE Qupiir Gyl Gy T G G G G ST G Y

Size in Number of

Device Address Words Devices
PC11 777550 4 1
PDP-11/04 777570 68 1
PDP-11/05 777570 68 1
PDP-11/10 777570 68 1
PDP-11/15 777570 68 1
PDP-11/20 777570 68 1
PDP-11/34 777570 68 1
PDP-11/35 777570 68 1
PDP-11/40 777570 68 1
PDP-11/45 777570 68 1
PDP-11/55 777570 68 1
PDP-11/60 777570 68 1
PDP-11/70 777570 : 68 1
PR11 777550 4 1
RC11 777440 8 1
RF11 777460 8 1
RJPO4 776700 22 1
RJS04 772040 16 1
RJ611 777440 16 1
RK11 777400 8 1
RL11 774400 4 2
RP11 776700 16 1
RS/RP/TJ 776300 32 1
RX02 777170 4 1
RX11 777170 4 1
TA11 777500 4 1
TC11 777340 8 1
Testers 770000 32 1
TJU16 772440 16 1
TM11 772520 8 1
TS04 772520 8 1
UDC-Units 771000 1 256
UDC11 771774 2 1
Unibus-Map 770200 64 1
VT48 772000 16 1
VTVO1 772600 56 1
1

XY 11 777530 4

A-3

INTERRUPT AND TRAP VECTORS
000 (reserved)

004 lllegal instructions, Bus Errors, Stack Limit, lllegal Internal
Address, Microbreak.
Microbreak.

010 Reserved instructions

014 BPT, breakpoint trap (Trace)

020 10T, input/output trap

024 Power Fail
030 EMT, emulator trap
034 TRAP instruction

040 System software
044 System software
050 System software
054 System software

060 Console Terminal, keyboard/reader
064 Console Terminal, printer/punch
070 PC11, paper tape reader

074 PC11, paper tape punch

100 KW11-L, line clock

104 KW11-P, programmable clock

110

114 Memory system errors (Cache, UNIBUS Memory, UCS Parity)
120 XY Plotter

124 DR11-B DMA interface; (DA11-B)
130 ADO1, A/D subsystem

134 AFC11, analog subsystem

140 AAll, display

144 AAll, light pen

150

154

160

164

170 User reserved
174 User reserved

200 LP11/LS11, line printer

204 RS04/RF11, fixed head disk

210 RC11, disk

214 TC11, DECtape

220 RK11, disk

224 TU16/TM11, magnetic tape

230 CD11/CM11/CR11, card reader

234 UDC11, digital control subsystem; ICS/ICR11
240 PIRQ, Program Interrupt Request (11/55,11/45)

1

244 Floating Point Error
250 Memory Management
254 RP04/RP11 disk pack
260 TAll, cassette

264 RX11, floppy disk

270 User reserved
274 User reserved

300 (start of floating vectors)
FLOATING VECTORS

There is a floating vector convention used for communications (and
other) devices that interface with the PDP-11. These vector addresses
are assigned in order starting at 300 and proceeding upwards to 777.
The following Table shows the assigned sequence. It can be seen that
the first vector address, 300, is assigned to the first DC11 in the system.
If another DC11 is used, it would then be assigned vector address 310,
etc. When the vector addresses have been assigned for all the DC11'’s
(up to a maximum of 32), addresses are then assigned consecutively
to each unit of the next highest-ranked device (KL11 or DP11 or DM11,
etc.), then to the other devices in accordance with the priority ranking.

Priority Ranking for Floating Vectors
(starting at 300 and proceeding upwards)

Rank Device Vector Size Max No.
(in octal)

1 DC11 (10)s 32
2 KL11, DL11-A, DL11-B 10 16
3 DP11 10 32
4 DM11-A 10 16
5 DN11 4 16
6 DM11-BB (DH11-AD or DV11) 4 16
7 DR11-A 10* 32
8 DR11-C 10% 32
9 PA611 Reader 4% 16
10 PA611 Punch 4% 16
11 DT11 10* 8
12 DX11 10%* 4
13 DL11-C, DL11-D, DL11-E 10 31
14 DJ11 10 16
15 DH11 10 16
16 GT40 10 1
17 LPS11 30% 1
18 DQ11 10 16
19 KW11-W 10 1
20 - DU11 10 16
21 DUP11 10

22 Dv11 10

*__The first vector for the first device of this type must always be on a (10),
boundary.

A-5

Control and Status 2 (RKCS2)
Disk Address (RKDA)

*%777 444 Bus Address (RKBA)
*777 442 Word Count (RKWC)

*#777 440 Control and Status 1 (RKCS1)
777 436 #8
777 434 #7
777 432 #6
777 430 DT11, bus switch #5
777 426 #4
777 424 #3
777 422 #2
777 420 #1
777 416 disk data (RKDB)
777 414 maintenance
777 412 disk address (RKDA)
777 410 RK11, bus address (RKBA)
777 406 word count (RKWC)
777 404 disk status (RKCS)
777 402 errorr (RKER)
777 400 drive status (RKDS)
777 376

} DC14-D
777 360
777 356
777 354
777 352
777 350 DECtape data (TCDT)
777 346 TC11l, bus address (TCBA)
777 344 word count (TCWC)
777 342 command (TCCM)
777 340 DECtape status (TCST)
777 336
} KE11l-A, EAE #2

777 320
777 316 arithmetic shift
777 314 logical shift
777 312 normalize
777 310 KE11-A, EAE #1, step count/status register
777 306 multiply
777 304 multiplier quotient
777 302 accumulator
777 300 divide
777 166 | data (CDDB)
777 164 CR11/ data (CRB2) comp | cur adrs (CDBA)
777 162 CM11, data (CRB1) | cp11, col count (CDCC)
777 160 status (CRS) | status (CDST)
776 776
776774
776 772 ADO1, A/D data (ADDB)
776 770 A/D status (ADCS)

*%Also used by RC 11
A-6

—

776 766
776 764
776 762
776 760
776 756
776 754

776 752

776 750
776 746
776 744
776 742
776 740
776 736
776 734
776 732
776 730
776 726
776 724
776 722
776 720
776 716
776 714
776 712
776 710

776 706
776 704

776 702
776 700

776 676
776 500
776 476
776 400
776 276
776 200
776 176
775 610
775576
775 400

—_ = = Y

AA1l #1,

RPO4,

KL11,

register 4 (DAC4)
register 3 (DAC3)
register 2 (DAC2)
register 1 (DAC1)
D/A status (CSR)

cont & status #3 I
(RPCS3)
bus adrs ext (RPBAE)
ECC pattern (RPEC2)
ECC position (RPEC1) |
error #3 (RPER3)
error #2 (RPER2)
cur cylinder (RPCC)
desired cyl (RPDC) |
offset (RPOF)
serial number (RPSN) l
drive type (RPDT) |
maintenance (RPMR)
data buffer (RPDB) [
look ahead (RPLA)
attn summary (RPAS) |
error #1 (RPER1)
drive status (RPDS) |
cont & status #2 |
(RPCS2)
sector/track adrs |
(RPDA)
UNIBUS address |
(RPBA)
word count (RPWC) I
cont & status #1
(RPCS1) I

#16

DL11-A, -B,

AAll,

DX11

#1
#5

#2

#31

DL11-C, -D, -E,

Ds11,

#1
#4
#1

A-7

RP11,

silo memory (SILO)
cyl adrs (SUCA)
maint 3 (RPM3)
maint 2 (RPM2)
maint 1 (RPM1)
disk adrs (RPDA)
cyl adrs (RPCA)
bus adrs (RPBA)
word count (RPWC)
disk status (RPCS)
error (RPER)

disk status (RPDS)

FLOATING ADDRESSES

There is a floating address convention used for communications (and
other) devices interfacing with the PDP-11. These addresses are as-
signed in order starting at 760 010 and proceeding upwards to 763 776.

Floating addresses are assigned in the following sequence:

Rank Device

1 DJ11

2 DHI11

3 DQll

4 DUl1l
DEVICE ADDRESSES

777 776 Processor Status word (PS)

777 774 Stack Limit (SL)

777 772 Program Interrupt Request (PIR)
777 770 Microprogram Break

777 766 CPU Error
777 764 System 1/D
777 762 Upper Size
777 760 Lower Size

777 756

777 754

777 752 Hit/Miss
777 750 Maintenance

777 746 Cache Control

777 744 Memory System Error
777 742 High Error Address
777 740 Low Error Address

} System Size

777 717 User R6 (SP)
777 716 Supervisor R6 (SP)
777 715 R5
777 714 R4
777 713 General registers, R3
777 712 Set 1 R2
777 711 R1
777 710 RO
777 707 R7 (PC)
777 706 Kernel R6 (SP)
777 705 R5
777 704 R4
777 703 General registers, R3
777 702 Set O R2
777 701 R1
777 700 RO

A-8

777 676

777 660
777 656

777 640
777 636

777 620
777 616

— Y =

777 600
777 576

User Data PAR,reg 0-7

User Instruction PAR, reg 0-7

User Data PDR, reg 0-7

User InstructionPDR, reg 0-7

(MMR2)

777 574 Memory Mgt regs, (MMR1)

777 572

(MMRO)

777 570 Console Switch & Display Register

777 566

printer/punch data

777 564 Console Terminal, printer/punch status

777 562 keyboard/reader data
777 560 keyboard/reader status
777 556 punch data (PPB)

777 554 PC11/PR11, punch status (PPS)
777 552 reader data (PRB)

777 550 reader status (PRS)

777 546 KW11-L, clock status (LKS)
777 544 KU116-AA, UCS Data

777 542
777 540
777 516

Address
Status

printer data

777 514 LP11/LS11/LV11, printer status

777 512
777 510

777 506
777 504
777 502 TAll,
777 500

777 476 RKO06,

777 474

777 472
*777 470
*777 466
*777 464
*777 462
*777 460
*777 456
*777 454
*777 452

*Also used by RF 11

cassette data (TADB)

cassette status (TACS)
Maintenance Register 3, (RKMR3)
Maintenance Register 2, (RKMR2)
ECC Pattern Register (RKECPT)
ECC Position Register (RKECPS)
Maintenance Register 1 (RKMR1)
Data Buffer (RKDB)

Unused

Desired Cylinder (RKDC)
Attention Summary/Offset (RKAS/OF)
Error (RKER)

Drive Status (RKDS)

A-9

775 376
775 200
775176
775 000
774776

774 400
774 376

774 000
773 766

773 000
772776

772 700
772-676

772 600

772576
772 574
772572
772570

772556

772 550

772 546
772 544
772 542
772 540

772 536
772534
772532
772530
772 526
772 524
772522
772 500

772516

772 476
772 474
772 472
772470

#16
#1
#16 |
DM11, | DV11, #1-4
#1 |
#1
#32
#32
#1

BM792, BM873 ROM
PDP-11 diagnostic bootstrap (half of it)

DN11,

DP11,

DC11,

PA611 typeset punch

PA611 typeset reader

maintenance (AFMR)
AFC11, MX channel/gain (AFCG)

flying cap data (AFBR)

flying cap status (AFCS)

XY11 plotter

counter
KW11-P, count set
clock status

read lines (MTRD)
tape data (MTD)

TM11, memory address (MTCMA)
byte record counter (MTBRC)
command (MTC)
tape status (MTS)

Memory Mgt reg (MMR3)

cont & status #3 (MTCS3)
bus adrs ext (MTBAE)
tape control (MTTC)

serial number (MTSN)

A-10

l

772 466
772464
772 462
772 460
772 456
772 454
772452
772450
772 446
772444
772442
772 440

772 436

772 430

772 416
772414
772412
772410

772376

772 360
772 356

772 340
772 336

772 320
772 316

772 300
772 276

772 260
772 256

772 240
772 236

772 220
772 216

772 200
772136

772110

TU16,

drive type (MTDT)
maintenance (MTMR)

data buffer (MTDB)

check character (MTCK)
attention summary (MTAS)
error (MTER)

drive status (MTDS)

cont & status #2 (MTCS2)
frame count (MTFC)
UNIBUS address (MTBA)
word count (MTWC)

cont & status #1 (MTCS1)

} DR11-B #2

—_ = Y Y Y Y Y Y Y

data (DRDB)

DR11-B #1, status (DRST)

bus address (DRBA)
word count (DRWC)

Kernel Data PAR, reg 0-7

Kernel Instruction PAR, reg 0-7

Kernel Data PDR, reg O-7

Kernel Instruction PDR, reg 0-7

Supervisor Data PAR, reg 0-7

Supervisor Instruction PAR, reg 0-7

Supervisor Data Descriptor PDR, reg 0-7

Supervisor Instruction Descriptor PDR, reg 0-7

UNIBUS Memory Parity

A-11

772 072
772 070
772 066
772064
772 062
772 060
772 056
772 054

772 052
772 050
772 046
772 044
772042
772 040

772016

772010

772 006
772 004
772 002
772 000

771776
771774
771772
771770

771776

771 000
770776

770 700
770 676

770 500

770 436
770 434
770432
770 430
770 426
770 424
770 422
770 420
770 416
770 414
770412
770 410
770 406
770 404
770402
770 400

RS04,

RS04,

cont & status #3 (RSCS3)
bus adrs ext (RSBAE)
drive type (RSDT)
maintenance (RSMR)

data buffer (RSDB)

look ahead (RSLA)
attention summary (RSAS)
error (RSER)

drive status (RSDS)

control & status #2 (RSCS2)
desired disk adrs (RSDA)
UNIBUS address (RSBA)
word count (RSWC)

control & status #1 (RSCSI1)

} GT40 #2

Y axis
X axis

GT40 #1 status

uDC11,

program counter

status (UDCS) |
scan (UDSR) | ICS/ICR11

} UDC functional 1/0 modules

} KG11,

} DM11-BB,

LPS11,

#8
#1
#16

#1
DMA

ext DAC

D/A YR

D/A XR

D/A SR

D 1/0 output
D 1/0 input
CKBR

CKSR

ADBR

ADSR

770 366

770 200
767 776

766 000
765776

765 000
763776

760010

UNIBUS Map

GT40 bootstrap

(half of it)

g—,——J | — o —

(top of floating addresses)

(start of floating addresses)

All presently unused UNIBUS addresses are

served by Digital.

PDP-11 diagnostic bootstrap

NOTE

User &
Special
Systems

re-

*
.
*
.

e v o

APPENDIX B
INSTRUCTION TIMING

PDP-11/04 CENTRAL PROCESSOR

INSTRUCTION EXECUTION TIME .

The execution time for an instruction depends on the instruction itself
and the modes of addressing used. In the most general case, the In-
struction Execution Time is the sum of a Basic Time, a Source Address
Time, and a Destination Address Time.

Instr Time = Basic Time 4+ SRC Time 4 DST Time

Double Operand instructions require all 3 of these Times, Single Oper-
and instructions require a Basic Time and a DST Time, and with all
other instructions the Basic Time is the Instr Time.

All Timing information is in microseconds, unless otherwise noted. Times
are typical; processor timing can vary £10%.

B (-

BASIC TIMES
Double Operand Basic Time (u sec)
Instruction MOS Parity MOS
ADD, SUB, BIC, BIS 3.17 3.33
CMP, BIT 291 3.07
MOV 291 3.07
Single Operand
CLR, COM, INC, DEC, NEG, ADC, SBS 2.65 2.81
ROR, ROL, ASR, ASL 291 3.07
TST 2.39 2.55
SWAB 291 3.07
All Branches (branch true) 2.65 2.81
All Branches (branch false) 1.87 2.03
Jump Instructions
JMP 0.91 0.88
JSR 3.27 3.27
Control, Trap, and Miscellaneous Instructions
RTS 4.11 4.43
RTI, RTT 5.31 5.79
Set N,Z,V,C 2.39 2.55
Clear N,Z,V,C 2.39 2.55
HALT 1.46 1.62
WAIT 2.13 2.29
RESET 100 ms 100 ms
10T, EMT, TRAP, BPT 7.95 8.49

B-1

ADDRESSING TIMES
ADDRESSING FORMAT Time (usec)

SRC Time* DST Time**
Parity Parity
Mode | Description Symbolic MOS | MOS | MOS | MOS
0 REGISTER R 0 0 0 0
1 REGISTER @Ror(R) | 094 1,10 | 148 1.67
DEFERRED
2 AUTO-INCREMENT (R)+ 1.20 136 | 1.76 1.95
3 AUTO-INCREMENT @(R)+ 266 298 | 3.20 3.55
DEFERRED
4 AUTO- —(R) 1.20 1.36 | 1.76 1.95
DECREMENT
5 AUTO- @—(R) 266 298 |3.20 3.55
DECREMENT
DEFERRED
6 INDEX X(R) 292 324 | 346 381
7 INDEX @X(R) 4.38 4.86 |[4.92 543
DEFERRED

ve

* For Source time, add the following for odd byte addressing: 0.52
(usec)
*% For Destination time, modify as follows:
a) Add for odd byte addressing with a non-modifying instruction:
0.52 (usec)
b) Add for odd byte addressing with a modifying instruction modes
1-7: 1.04 (usec) .
¢) Subtract for all non-modifying instructions except Mode O:
MOS: 0.54 Parity MOS: 0.57 (usec)
d) Add for MOVE instructions Mode 1-7: 0.26 (usec)
e) Subtract for JMP and JSR instructions, modes 3, 5, 6, 7: 0.52
(usec)

B-2

I

_ Destination Memory

Mode Cycles Core MOS
0 0 0.00 0.00
1 1 0.64 0.64
2 1 0.64 0.64
MFPS 3 2 1.95 2.08
4 1 0.82 0.82
5 2 1.95 2.08
6 2 2.13 2.26
7 3 3.26 3.51
I1l. EXECUTE, FETCH TIME
DOUBLE OPERAND
Memory
Instruction Cycles Core MOS
ADD, SUB, CMP, BIT, 1 2.03 2.16
BIC, BIS, XOR
MOV 1 1.83 1.96
SINGLE OPERAND
CLR, COM, INC, DEC, 1 1.83 1.96
ADC, SBC, TST
SWAB, NEG 1 2.03 2.16
ROR, ROL, ASR, ASL 1 2.18 2.31
MTPS 2 2.99 3.12
MFPS 2 1.99 2.12
EIS INSTRUCTIONS (use with DST times)
MUL 1 *8.82 *8.95
DIV (overflow) 1 2.78 291
12.48 12.61
ASH 1 *%4.18 *%4.31
ASHC 1 *%4.18 *%4.31
MEMORY MANAGEMENT INSTRUCTIONS
MFPI (D) 2 3.07 3.14
MTPI (D) 2 3.37 3.34

* Add 200ns for each bit transition in serial data from LSB to MSB

*% Add 200ns per shift

B-3

Destination Memory
Instruction Mode Cycles Core MOS
0 0 0.00 0.00
1 2 1.42 1.54
SWAB, ROR, ROL, 2 2 1.57 1.69
ASR, ASL 3 3 2.70 2.95
4 2 1.62 1.74
5 3 2.80 3.05
6 3 2.90 3.15
7 4 4.09 4.46
0 0 0.00 0.00
1 1 1.13 1.26
Non-Modifying 2 1 1.28 1.41
Single Operand and 3 2 242 2.67
Double Operand 4 1 1.33 1.46
5 2 2.52 2.77
6 2 2.62 2.87
7 3 3.80 4.18
0 0 0.00 0.00
1 1 0.98 1.24
2 1 1.32 1.44
MFPI (D) 3 2 2.20 2.45
MTPI (D) 4 1 1.18 1.44
5 2 2.20 245
6 2 2.40 2.65
7 3 3.59 3.96
BRANCH INSTRUCTIONS
Memory
Instruction Cycles Core MOS
BR, BNE, BEQ, (Branch) 1 2.18 2.31
BPL, BMI, BVC, BVS, BCC,
BCS, BGE, BLT, BGT,
BLE, BHI, BLOS,
BHIS, BLO
(No Branch) 1 1.63 1.76
SOB (Branch) 1 2.38 2.51
(No Branch) 1 1.98 2.11

T

B.2 PDP-11/34 CENTRAL PROCESSOR

INSTRUCTION EXECUTION TIME

The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the Instruction Execution Time is the sum of
a Source Address Time, a Destination Address Time, and an Execute,
Fetch Time.

Instr Time = SRC Time 4 DST Time 4 EF Time

Some of the instructions require only some of these times, and are so
noted. All Timing information is in microseconds, unless otherwise noted.
Times are typical; processor timing can vary = 109%.

BASIC INSTRUCTION SET TIMING
Double Operand

Instr Time = SRC Time -+ DST Time + EF Time
Single Operand

Instr Time = DST Time + EF Time
Branch, Jump, Control, Trap, & Misc

Instr Time = EF Time

NOTES

1) The times specified apply to both word and
byte instructions whether odd or even byte.

2) Timing is given without regard for NPR or
BR servicing.

3) If the remory management is enabled exe-
cution times increase by 0.12 usec for each
memory cycle used.

4) All timing is based on memory with the fol-
lowing performance characteristics:

Memory Access Cycle

Time Time

Core (MM11-DP) .510 usec 1.0 usec
MOS (MS11-JP) .635 .775

B-5

I. SOURCE ADDRESS TIME

Source Memory Core MOS
Instruction Mode Cycles (MM11-DP) (MS11-JP)
0 0 0.00 usec 0.00 usec
1 1 1.13 1.26
2 1 1.33 1.46
Double Operand 3 2 2.37 2.62
4 1 1.28 141
5 2 2.57 2.82
6 2 2.57 2.82
7 3 3.80 4.18
Il. DESTINATION TIME
Destination Memory
Instruction Mode Cycles Core MOS
0 0 0.00 0.00
Modifying Single 1 2 1.62 1.74
Operand 2 2 1.77 1.89
and 3 3 2.90 3.15
Modifying Double 4 2 1.77 1.89
Operand 5 3 3.00 3.25
(Except MOV, SWAB, 6 3 3.10 3.35
ROR, ROL ASR ASL) | 7 4 4.29 4.66
0 0 0.00 0.00
1 1 0.93 0.93
2 1 0.93 0.93
Mov 3 2 2.17 2.29
4 1 1.13 1.13
5 2 2.22 2.34
6 2 2.37 2.49
7 3 3.50 3.75
0 0 0.00 0.00
1 1 0.95 0.95
2 1 1.13 1.26
MTPS 3 2 2.26 2.51
4 1 1.13 1.26
5 2 2.26 2.51
6 2 2.44 2.69
7 3 3.57 4.20

B-6

JUMP INSTRUCTIONS
Destination Memory

Mode Cycles Core MOS
1 1 1.83 1.96
2 1 2.18 2.31
JMP 3 2 3.12 3.37
4 1 2.03 2.16
5 2 3.07 3.32
6 2 3.07 3.32
7 3 4.25 4.78
1 2 3.32 3.44
2 2 3.47 3.59
JSR 3 3 4.40 4.65
4 2 3.32 3.44
5 3 4.40 4.65
6 3 4.60 4.85
7 4 5.69 6.06
Memory
Instruction Cycles Core MOS
RTS 2 3.32 3.57
MARK 2 4.27 4.52
RTI, RTT 3 4.60 4.98
Set or Clear C,V,N,Z 1 2.03 2.16
HALT 1 1.68 1.81
WAIT 1 1.68 1.81
RESET 1 100 msec 100 msec
I0T, EMT, TRAP, BPT 5 7.32 7.7

LATENCY

Interrupts (BR requests) are acknowledged at the end of the current in-
struction. For a typical instruction, with an instruction execution time of
4 usec, the average time to request acknowledgement would be 2 usec.

Interrupt service time, which is the time from BR acknowledgement to
the first subroutine instruction, is 7.32 usec, max. for core, and 7.7 usec
for MOS.

NPR (DMA) latency, which is the time from request to bus mastership
for the first NPR device, is 2.5 usec, max.

B-7

NOTES
1. Add 0.84 useconds when in rounding mode (FT = 0).

2. Add 0.24 useconds per shift to align binary points and 0.24 useconds
per shift for normalization. The number of alignment shifts is equal
to the exponent difference for exponent differences bounded as fol-
lows:

1 <|EXP (AC)—EXP (FSRC)|< 24 single precision

1 <IEXP (AC)—EXP (FSRC)| < 56 double precision

The number of shifts required for normalization is equivalent to the
number of leading zeroes of the result.

3. Add .24 useconds times the exponent of the product if the exponent
of the product is:

1 < EXP (PRODUCT) < 24 single-precision
1 < EXP (PRODUCT) < 56 double-precision

Add 0.24 useconds per shift for normalization of the fractional result.
The number of shifts required for normalization is equivalent to the
number of leading zeroes in the fractional result.

4. Add 0.24 useconds per shift for normalization of the integer being
converted to a floating point number. For positive integers, the num-
ber of shifts required to normalize is equivalent to the number of
leading zeroes; for negative integers, the number of shifts required
for normalization is equivalent to the number of leading ones.

5. Add 0.24 useconds per shift to convert the fraction and exponent to
integer form, where the number of shifts is equivalent to 16 minus
the exponent when converting to short integer or 32 minus the ex-
ponent when converting to long integer for exponents bounded as
follows: .

1 < EXP (AC) < 15 short integer
1 < EXP (AC) < 31 long integer

B-4 PDP-11/55, 11/45 CENTRAL PROCESSORS
INSTRUCTION EXECUTION TIME

The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the Instruction Execution Time is the sum of a
Source Address Time, a Destination Address Time, and an Execute,
Fetch Time.

Instr Time = SRC Time 4 DST Time 4 EF Time

Some of the instructions require only some of these times, and are so
noted. Times are typical; processor timing, with core memory, may vary
+159, to —109%,.

B-8

BASIC INSTRUCTION SET TIMING
Double Operand

all instructions,
except MOV: Instr Time = SRC Time + DST Time
4 EF Time
MOV Instruction: Instr Time — SRC Time + EF Time

Single Operand
all instructions: Instr Time = DST Time 4 EF Time or
Instr Time = SRC Time + EF Time

Branch, Jump, Control, Trap & Misc
all instructions: Instr Time = EF Time

USING THE CHART TIMES

To compute a particular instruction time, first find the instruction “EF”’
Time. Select the proper EF Time for the SRC and DST modes. Observe
all “NOTES” to the EF Time by adding the correct amount to basic EF
number.

Next, note whether the particular instruction requires the inclusion of
SRC and DST Times, if so, add the appropriate amounts to correct EF
number.

NOTES

1. The times specified generally apply to Word instructions. In most
cases Even Byte instructions have the same times, with some Odd
Byte instructions taking longer. All exceptions are noted.

2. Timing is given without regard for NPR or BR servicing. Core mem-
ory is assumed to be located within the CPU mounting assembly.

3. If the Memory Management option is installed and operating, instruc-
tion execution times increase by .09 psec for each memory cycle
used.

4. All times are in microseconds.

SOURCE ADDRESS TIME

SRC Time
Source 8K 16K Memory

Instruction Mode Bipolar Core Core Cycles

0 .00 .00 .00 0]

1 .30 .83 .89 1

2 .30 .83 .89 1
Double 3 .75 1.81 1.92 2
Operand 4 45 .98 1.04 1

5 .90 1.96 2.07 2

6 .60 1.73 1.86 2

7 1.05 2.71 2.89 3

B-9

DESTINATION ADDRESS TIME

DST Time (A)

DST 8K 16K Memory

Instruction Mode | Bipolar Core Core Cycles
0 .00 .00 .00 0
1 .30 .83(B) .86(B) 1
Single Operand 2 .30 .83(B) .86(B) 1
and Double Oper- 3 .75 1.81(B) 1.92(B) 2
and (except MOV, 4 45 .98 1.04 1
MTP, JMP, JSR) 5 .90 1.96 2.07 2
6 .60 1.73(B) 1.86(B) 2
7 1.05 2.71(B) 2.89(B) 3

NOTE (A): Add .15 psec for odd byte instructions, except DST Mode 0.
NOTE (B): For 8K core, add .07 usec if SRC Mode = 1-7; for 16K core,
add .085 usec if SRC Mode = 1-7.

B-10

J1 0951 G9* ppe ‘Y9I 4oy ‘/Y jou pue 81Aq ppo si 1Sd # 29sT 80" ppe /Y S! L

*/¥ 10U 81Aq ppo SI 1Sd
sq@ M ossv €Z° ppe ‘M8 404 :(3) ILON
/¥ S! 1S@ # desr ¢ ppy :(d) 10N
-/d S1 1S # d9s1 Zz' ppe ‘Y 9T 40} {Zy S1 1S@ #1 d9sM £z ppe ‘)8 404 :(0) ILON

)) (@
c | 181 28’1 Gl — - - I L6 06° 0og” dOX
@ €)) (@ () €] @
I |61 €11 sy’ T |eT'1 GO'T *14 T L6 06" og’ 119 ‘dWo
@ @ (@ ()) (@ sig ‘oig
¢ | 181 28’1 74 ¢ (¢TIl G0'1 14 1 L6 06’ og’ ‘ans ‘aav
2A9 | @10D al0) Jejodig | 2A9 | 810D 310D Jejodig | 2A) | ®10) alo) Jejodig | (wil 1S pue
LB | (M9T M8 W9 | IM9T M8 WaN | IMOT M8 awill J¥S
_|| swil 43 _ _ swtl 13 II_ _||I awilL u_m_|._ yum asn)
£ 0} T ®poN 1Sd 0 @pOoiN 1sd 0 8pPO 1sda
L 0} 0 ®PON DS L-T ®PON JYS 0 ®PON JUS
uononsu|

puesadg ajqgnog
FWIL HOL34 ‘ILNI3IX3

B-11

14 214 4 €0V G9'1 €TV 88'€ 0S'T L0 L
€ TR so'e 0c't 60°¢ 06'¢ G0'1 L0 9
€ 1€ €T'E Ge'1T TIe'e €r'e Ge'T L0 S
Z 91'¢ £0°¢C 06’ 8¢'¢ G1°'c 06" L0 4
€ Gg'e {0 0c'1 91'¢ 86'¢C 02’1 L0 € AOW
4 60'¢ G6'1 SL €1°¢C 00°¢ 74 L0 4
c 60'¢C G6'T Gl €I°¢C 00¢ 74 L0 T
I veE'1 8¢'1 74 6T'1 €I'T 09’ L 0
T cr'l S0'1 514 L6° 6’ og’ 9-0 0
S9J0A) 8109 109 Jejodig 9109 8109 Jejodig | J93s180y Spo (pwil OYS
Kows _xm: 8 M9T n8 _ 1sa 1sa yum esn)
(£-1 = JAon 2YS) _ _ (0 = 3aon 2ys) uononasuj
awll 43 swlj 43

(1u0)) puesadg signog

B-12

£y S! 1s@ # dest 0og* ppy :(r) ILON

yiys Jad dasm GT1' ppy :(I) ILON

91Aq ppo J1 299s1 GT* PpY :(H) JLON

-/ S1 1S §1 99sM Zz' ppe “M9T Jo} /Y sI 1Sa 41 99sM £2° ppe ‘Y8 Jod (D) ILON
*9)Aq ppo Ji desr ZI° PPY :(4) ILON

m m) (V) m ()
1 617’1 EV'1 06’ T ve'1 8¢'1l 74 OHSY ‘HSY
(H) (H) ® 4] ()]
4 18T 28’1l GL T 16" 06’ og’ dsy ‘Hod
(®)) (r)
T 61’1l €T'1 *i7d T L6 06’ og’ 1S1)
()) o
4 66°1 (o) 4 GO'1T T vE'T . 821 SL 93N
) ®) (r
4 18°'T 28’1l G/l T L6 06’ og” 1XS
‘aVMS “ISY “10¥ ‘08S
‘0ay ‘03d ‘ONI ‘W02 ¥10
S8|9AD 109 2109 Jejodig S9J0A) | @100 2109 lejodig (swiil 1Sd ymm asn)
KowaW | IM9T 8 Kows | [M9T 8 uoponasu|
.||| awi] mulL —Il awl] 43 ||
£ 0} T 3AON 1sd 0 = 3JAO0WN 1sd

pueiadg aj3uis

-

Single Operand (Cont.)

—

Instruction 8K 16K Memory
(Use with SRC Times) Bipolar Core Core Cycles
MUL 3.30 3.83 3.89 1
DIV
by zero .90 1.43 1.49 1
shortest 7.05 7.58 7.64 1
longest 8.55 9.08 9.14 1
8K 16K Memory
Instruction Bipolar Core Core Cycles
MFPI 1.05 2.18 2.31 2 use
with
MFPD 1.05 2.18 2.31 2 SRC
times
Instruction Time
DST 8K 16K Memory
Instruction | Mode Bipolar Core Core Cycles
MTPI 0 .90 2.03 2.16 2
MTPD 1 1.20 2.93 3.13 3
2 1.20 2.93 3.13 3
3 1.65 4.03 4.28 4
4 1.35 3.01 3.19 3
5 1.80 4.11 4.35 4
6 1.65 4.03 4.28 4
7 2.10 5.01 5.32 5
Branch Instructions
Instr Time Instr Time
(Branch) (No Branch)
8K 16K 8K 16K | Memory
Instruction Bipolar Core Core | Bipolar Core Core| Cycles
BR, BNE, BEQ, .60 1.13 1.18| .30 .90 .98
BPL, BMI, BVC,
BVS, BCC, BCS,
BGE, BLT, BGT,
BLE, BHI, BLOS,
BHIS, BLO
SOB .60 1.13 1.18 .75 1.28 1.32 1

B-14

e

Jump Instructions

Instr Time
DST ' 8K 16K| Memory
Instruction Mode Bipolar Core Core Cycles
1 .90 1.43 1.49 1
2 .90 1.43 1.49 1
3 1.20 2.26 2.37 2
JMP 4 .90 1.43 1.49 1
5 1.35 2.41 2.52 2
6 1.05 2.18 2.31 2
7 1.50 3.16 3.34 3
1 1.50 2.63 2.76 2
2 1.50 2.63 2.76 2
3 1.80 3.46 3.64 3
JSR 4 1.50 2.63 2.76 2
5 1.95 3.61 3.79 3
6 1.65 3.38 3.58 3
7 2.10 4.36 4.61 4
Control, Trap & Miscellaneous Instructions
Instr Time
8K 16K Memory
Instruction Bipolar Core Core Cycles
RTS 1.05 2.11 2.22 2
MARK .90 2.03 2.16
RTI, RTT 1.50 3.16 3.34
SETN, Z, V,C
CLR, N, Z, V,C .60 1.13 1.28
HALT 1.05 1.58 1.64
WAIT .45 45 45
WAIT Loop
foraBRis
.3 usec.
RESET 10ms 10ms 10ms
10T, EMT, 2.40 5.08 5.27 5
TRAP, BRT
SPL .60 1.13 1.19
INTERRUPT 2.25 4.95 5.07 4
First Device
B-15

LATENCY

Interrupts (BR requests) are acknowledged at the end of the current
instruction. For a typical instruction execution time of 3 usec, the aver-
age time to request acknowledgement would be one-half this or 1.5 usec.
The worst case (longest) instruction time (Negative Divide with SRC
Mode 7) and hence, the longest request acknowledgement would be
12.62 usec max with 16K core (11.79 usec with 8K core, and 9.00 usec
with Bipolar).

The Interrupt service time, which is the time from BR request acknowl-
edgement to the fetch of the first subroutine instruction, is 5.44 pusec
max with 16K core, 4.95 usec with 8K core, and 2.25 usec with Bipolar.

Hence, the total worst case time from BR request to begin the fetch of
the first service routine instruction is:

Bipolar 8K Core 16K Core
Normal 11.25 16.74 18.41
Memory Management
Operating 11.70 17.19 18.96

The total average time for BR request to begin the fetch of the first ser-
vice routine instruction is:

Bipolar 8K Core 16K Core
Normal 3.95 8.45 9.30

Memory Management
Operating 4.40 8.90 9.75

NPR Latency is 3.5 usec worst case.

B-16

PDP-11/60 INSTRUCTION EXECUTION TIME

The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the Instruction Execution Time is the sum of
a Source Address Time, a Destination Address Time, and an Execute,
Fetch Time.

Instr Time = SRC Time + DST Time + EF Time

Some of the instructions require only some of these times and are so
noted. Times are typical and are based upon the MM11-WP memory as
backing store. The simplified presentation of the timing data has occa-
sionally resulted in a larger time for an instruction being noted. All
times may vary +109% due to clock and bus tolerances.

B.2 BASIC INSTRUCTION SET TIMING
Double Operand
all instructions,
except MOV: Instr Time = SRC Time + DST Time + EF
Time
MOV: Instr Time = SRC Time + EF Time (word
only)

Single Operand
all instructions: Instr Time = DST Time 4+ EF Time or
Instr Time = SRC Time + EF Time

Branch, Jump, Control, Trap & Misc
all instructions: Instr Time = EF Time

EIS (MUL, DIV, ASH, ASHC)
all instructions: Instr Time = DST Time 4 EF Time

Floating Point
: all instructions:
except ABSF, ABSD,
NEGF, and NEGD: Instr Time = SRC Time + EF Time
ABSF, ABSD,
NEGF and NEGD: Instr Time — DST Time 4 EF Time

Using the Chart Times

To compute a particular instruction time, first find the instruction “EF"’
Time. Select the proper EF Time for the SRC and DST modes. Observe
all “NOTES" to the EF Time by adding the correct amount to basic EF
number.

Next, note whether the particular instruction requires the inclusion of
SRC and DST Times; if ‘'so, add the appropriate amounts to correct EF
number.

Chart Times
The times given in the chart are for Cache “hits"’; that is, all the read
cycles are assumed to be in the Cache. The number of read cycles in
each subset of the instruction is also included so that timing can be
calculated for a specific case of hits and misses, or timing can be cal-
Cculated based on an average hit rate.
a) Specific hits and misses
Add 1.1 usec for each read cycle which is a miss instead of a hit.
b) Average hit rate
If Py is the percent of reads that are hits, add 1.1 x (1 — Py) X
(number of read cycles) to the instruction timing.

For example, an ADD A,B instruction using Mode 6 (indexed) address
modes:

1) All Hits:
SRC time 0.85 usec 2 read cycles

DST time ; 0.85 usec 2 read cycles
EF time = 2.2 usec 1 read cycle

TOTAL = 3.9 usec 5 read cycles
2) 4 Hits, 1 Miss
Total = 3.9 + 1.1
= 5.0 usec.
3) Read hit rate of 879,

Total = 3.9 4 (1.1)(1 — .87)(5)
= 4.6 usec.

NOTES

1. The times specified generally apply to Word
instructions. In most cases Even Byte instruc-
tions have the same time, with some Odd
Byte instructions taking longer. All exceptions
are noted.

2. Timing is given without regard for NPR or BR
serving.

3. Times are not affected if Memory Manage-
ment is enabled.

4. All times are in microseconds, except where

noted.
Source Address Time
Read
Source Memory
Instruction Mode SRC Time Cycle
0 .00 0
1 .51 1
2 517 1
Double 3 1.0 2
Operand 4 .68 1
5 1.2 2
6 .85 2
7 1.4 3

Destination Address Time

Read
DST Memory
Instruction Mode DST Time (A) Cycle
0 .00 0
Single Operand é g]i i
and Double Oper- 3 1.0 2
and (except MOV, 4 68 1
MTPI, MTPD, JMP, 5 1.2 2
JRS) 6 85 2
7 1.4 3

NOTE (A): Add .17 usec for odd byte instructions, except DST Mode O.

Execute, Fetch Time
(Double Operand)

Instruction EF Time EF Time EF Time

(SRC (SRC (SRC
(Use with SRC Mode 0) Read Mode 1-7) Read Mode 0-7) Read
Time and DST (DST Mem. (DST Mem. (DST Mem.
Time) Mode 0) CYC Mode0O) CYC Model-7) CYC
ADD, SUB, BIC, .34 1 1.0 1 2.2 1
BIS
CMP, BIT .34 1 1.0 1 1.0 1
XOR .34 1 — — 1.0 1
MOVB .34 1 .51 1 .51 1
Instruction EF Time EF Time Read
(Use with SRC DST DST (SRC Mode (SRC Mode Memory
Time) Mode Register =0) 1-7) Cycle
MOV 0 0-7 .34 .51 1

1 0-7 1.0 1.0 1

2 0-7 1.0 1.0 1

3 0-7 1.4 1.4 2

4 0-7 1.2 1.0 1

5 0-7 1.5 1.5 2

6 0-7 1.2 1.4 2

7 0-7 1.7 1.9 3

B-19

Execute, Fetch Time
(Single Operand)

EF Time

Instruction EF Time Read Read
(Use with DST (DST Mode Memory (DST Mode Memory
Time) =0) Cycle 1-7) Cycle
TST .34 1 .68 1
CLR, COM, INC, .34 1 1.9 1
DEC, ADC, ROL,
ASL
NEG, SBC, ROR, 1.2 1 2.4 1
ASR
Read
Memory
Instruction EF Time Cycle
MFPI, MFPD 6.1 1 Use with
SRC Times
Read
DST Instruction Memory
Instruction Mode Time Cycle
MTPI, MTPD 0 36 1
1 6.1 2
2 6.3 2
3 6.6 3
4 6.3 2
5 6.8 3
6 6.6 3
7 7.1 4
Branch Instructions
Read
Instruction Memory
Instruction Time Cycle
BR, BNE, BEQ, BPL, .85 1
BMI, BVC, BVS,
BCC, BGS, BGE,
BLT, BGT, BLE,
BHI, BLOS, BHIS,
BLO
SOB 2.0 1

B-20

1

JUMP Instructions

Read
DST Instruction Memory
Instruction Mode Time Cycle
JMP 1 1.2 1
2 1.4 1
3 1.5 2
4 1.4 1
5 1.7 2
6 1.4 2
7 1.9 3
Read
DST Instruction Memory
Instruction Mode Time Cycle
JSR 1 25 1
2 2.7 1
3 2.9 2
4 2.7 1
5 3.2 2
6 29 2
7 3.6 3
Miscellaneous Instructions
Read
Instruction Memory
Instruction Time Cycle
RTS 1.5 2
MARK 2.4 2
RTI 2.4 3
RTT 3.1 3
SETN,V,Z C 1.5 1
CLRN,V,Z C
RESET 10 msec 1
10T, EMT, BPT, TRAP 4.6 3
B-21

EIS Instructions MUL, DIV, ASH, ASHC
Source Address Time

Read
Source Time Memory
Mode (usec) Cycle
0 .340 0
1 .640 1
2 .640 1
3 1.19 2
4 .85 1
5 1.36 2
6 1.19 2
7 1.70 3
Add 1.1 usec for each read cycle which is a miss
EF Time
Read
EF Time Memory
Instruction (All Modes) Cycle
DIV 7.65 usec 1
MUL 6.12 usec 1
*ASH 3.57 usec 1
*ASHC 4.25 usec 1

*Add .17 usec for each shift

FLOATING POINT INSTRUCTION TIMING

Floating point instruction times are calculated in a manner similar to the
calculation of CPU instruction timing. However, due to the fact that the
FP11-E is a separate processor, calculation of floating point instruction
times must take this parallel or independent processing into account.

The following paragraphs provide a description of the method used to
calculate effective instruction execution times.

NOTE

Resync and Interaction Times are not consid-
ered since handshaking synchronization over-
head has been eliminated by the use of de-
coding and instruction fetch logic. That is, in-
struction fetch of floating point is initiated by
the CPU but is received simultaneously by both
processors.

In addition to instruction fetch and address calculation, the CPU con-
verts fixed to floating point notation and, in some instances, fully
executes the instruction (for example, LDFPS).

B-22

INDEX

154 155,186 to 188,

ABSD (Make Absolute
gouble instruction

2

ABSF (Make Absolute
Floating)
instruction
260

Access Control Field

ACF
147,148,184,185
Accgrfuiators

Accuracy]
floating point
grocessors
257 to 259
ACF (Access Control

ield
147 14% 184,185
Active Page Reglster

APR
140,141,145 to 147,
183

ADC (Add Carry)
1nstruct10n

53
ADCB (Add Carry Byte)
inggructlon

ADDD
Floatlng/Double)
1nstruc ion

Add 1nstruct10n

[14
Addresses
megory
isters
Addressing
a351gnments
PAR/PDR
146
cache memory
202,204
error trap

(continued)

Ab~-AS

Addre551ng (cont.)
o?78 179

ual
141 142,152 to 154,
174,180 -

Addre551ng modes
d1rect
4,34,35
indirec

[7
overview
21

p051t10n independent

ram count
pr og 30 to 34 36 37,39
summary
37 to 39
Address mod1f1cat1on
1%%op1ng technique

Address sga
to 147
App%&gatlon kernels

APR (Actlve ?age
1489141 145 to 147,
183

Architecture
floating point
grocessors

PDP—li famllg
236,237

ASCII chvers1ons

ASH (Arlthmetlc Shift)
1nstruct10n

42,54
ASHC (Arlthmetlc Shift
Combin
1nstruct10n

ASL (Arlthmetlc Shift
%egg) instruction

4

INDEX 1

AS-BM

ASLB (Arithmetic Shift
Left Byte)
%nsgructlon

5
ASR (érithmetic Shift
4%1 gt) instruction
A
ASRB (Arithmetic Shift
Right Byte)
instruction
2,55

Autodécrement deferred

mode

24,28,29,36,38,86
Autodecrement iooplng

lEgchnlque

Autodecrement mode
24,27,28,35,38,86,90
Auto;ggrement deferred

e

24,27,35,38,86

Autoincrement iooplng
technique

126
Autoincrement mode

24,26,27,34,38,86,90
Automatic nesting

95,96

14

Battery backup
MOS_memory
o
s Busy s
12 lg usy signa

BCC ééranch_if Carry
4le?r) instruction

érangh if Carry
et% instruction
44,5

BEQ (Branch if Equal)
instruction

BG (Bﬁs Grant)
2,1

7 .
BGE (éranch if Greater
Than or Equal)
instruction
4,56

’

BCS

BGT (Branch if Greater
%hgg) instruction

BHI (éranch if Higher)
instruction

57
BHIS (Branch if Higher
Than the Same)
1n§$ruct10n
BICB (Bit Clear Byte)
instruction

4
BIC (éit Clear)
instruction

BISB' (Bit Set Byte)
%nstructlon

BIS (Bit Set)
instruction

BITB (Bit Test Byte)
instruction

7~
BIT (Bit Test)
instruction
. 43,58
Bits |
condition code
47,48)
BLE (Branch if Less

Than or Equal to)
instruction

BLO (Branch if Lower)
1n§§ruct10n

Block'structure
PDP-11

2,3

BLOS' (Branch if Lower
or Same)
instructlon

BLT (Branch if Less
han) instruction

BMI (Branch if Minus)
inggructlon

14

INDEX 2

BNE (Branch if Not
Equal) instruction
44,61

Bootstrap loader
133

BPL (Branch if Plus)
1nstruct10n

61
BPT (ﬁreakp01nt Trap)
1ng§ruct10n

Branch instructions
BR jBrgnch) instruction

BR {8u§4reguest)

2 9 to 11,13 to 16
Bus Busg (BBSY) signal

Bus control section
237

Bus:cycle

Bus_Grant_ (BG)

Busllﬁngrupt (INTR)

Bus re%ue {BR)

BVC (Branch if Vv Bit
ear) instruction

BVS (éranch if V Bit
Set) instruction

Byt231nstruct10ns
Byte stack
89,90

Cache control register

Cache ' '{
131 %Ol o 210,213

C b1t
47,48

BN-CM

CCC (Clear All
Condition Code
Bits) instruction

46 to 48,62

Central processor unit

buf priority

pDP-11/45 gEd 11/55

CFCC (Cop Floating
Condition Codes)
%gstructlon

Chaining
bussgrants

CLC (Clear Q)
instruction
46 to 48,62
CLN (Clear N)
instruction
46 to 48,62
CLRB (Clear Byte)
1nsttuct10n

CLR éélear& instruction

CLRD (Clear Double)
instruction

CLRF (Clear Floating)
2%rzxstructmn

CLV (Clear V
1nstruct10n
46 to 48,6
CLz (Clear i
1nstruct10n
46 to 48,63
CMPB (Compare Byte)
instruction

63
CMP (Compare)
6%nstructlon

CMPD _ (Compare Double)
1nstruct10n

CMPF (éompare Floating)
instruction
62,263

4

INDEX 3

Co-DI

COde‘t' ind dent
S1ltlon lndependen
p°85 to 83 CoPe
pure

100
reentrant
01

00,1
COMB_(éomplement Byte)
instruction

22,41,
coM (éomplement)
instruction
’ 0 , .
Communication
between devices
geflalso Data bus

Comgétability

Computer Special
mI;gystemge(CSS) group

Condition code
instructions
6 to 48

Console emulator

PD{311/04

0
PDP-11/34
134,135 .
Conversion routines
o 115

132,137,138
pofg%i/45 and 11/55
Coroutines
102 to 106
Cfunter
oopi
7567
CPU .
bus_priority

PDP-11/45_and 11/55

160 to 164 .

CSS (Computer Special
5Systems) group

cle
us
11
Data
formats
cache memory
f%03t' int
oating poin
249 to 2??
structures
1Sg1rect pointers

transfers
11,12,16,17
Data bus
2,9 to 18,21,166,214
Datgggath section

Debugging
microprograms
539" 9 -

DECB (Decrement Byte)
1n25ructlon

DEC (6ecrement)
instruction

Deferred modes
see Addressing
.modes, indirect
Devices K |
bus pr10r1t¥
11,14 to 16
communication between
geflalso Data bus
14

service routine
ad?ﬁesses

4 .
Diagnostic Control
Store
. 233)
Direct 2dg§ess1ng modes

DIVD (Divide Double)
instruction

DIV (Divide) .
instruction

INDEX 4

DIVF (Divide Floating)
instruction
. 263,264
Division methods
111 to 113
Docgmentatlon

Double operand
instructions
23,41 to 43,49,50
Downward compaflblllty

Downward expandable
e
1?8?151
ECC (Error Correcti
2égde) "

EIS (Extended
Instruction Set)

23
EMT (Emulator Trap)
instruction
46,65,109,110
Emulation
E p§34'240
-phase
241,244
Errors
parity
214,215
Error rags .
108,109,166,167
Expa251?n direction

Extgggéd Control Store
Extended Instruction
2§%t (EIS)

FADD (Floating Add)
%nstructlon

FDIV. (Floating Divide)
instruction

65
FEA (Floating Exception

Addre 38) register
256) reg

DI-FS

FEC (Floating Exception
2ggde) register

Floati int
prggeggors (FPP)
accuracy
257 to 259
architecture
247,248
description
247 i i
instruction addressing
256,257
instructions
259 to 278
operation
248,249
pop-11/32
247,279 to 284
ppop-11/45 and 11/55
247,284 to 291
PDP-11/60
229,230,247,291 to
299
timing
278 to 300)
Floating point unit
status register
251 to 255
FMUL (Floating
Multiply)
instruction

FP11-A .
247,279 to 284
FP11-C
247,284 to 291
FP11-E
230,247,291 to 299
FPP) .
see Floating point
~ processors
FPS register
251"to 255
FSUB (Floating
Subtract)
%nstructlon

INDEX 5

Ge=In

General purpose
registers (GPR)
addreSsin es

21,24,37 to 39
poP-11/45 and 11/55
161 to 163
saging contents
Grant chain
15

HALT instruction
46,67)
Hardwgge stack pointer
21,22,89)
HITzégache operation)

Hit/Miss register
é09'210eg L
Horizontal priorities

14,15

INCB (Increment Byte)
instruction

- 22,41,67

INC (Increment)
instruction

,41,67

Index deferred mode
24,30,36,38,86

Index e
24,29,35,38,86

Index register
modification
loogln? methods
126,127 .
Indirect addressing
modes
24,35,36
Input buffer
magzglng

Instruction formats
brznch

4
double operand
. 23,43 pe
jum

(continued)

INDEX 6

Instruction formats
. (gont-) ,
microprogrammin
_24%?243 . J

single operan
23,42_pe
su?goutlne return

Instructions
addressing
floating point
grocessors _
256,257

memory_ management
156,157 h
rocessin ases
P 240 to 345

reserved
109

timin%_)
floating point
rOCessors
278 to 300

trag

109 to 111
Instruction set
c02d1t1028codes

to
double operand
%nzgructlons

examples

48 to 51
extensions

239)
floating point

instructions

. 259 to 278
1n22trupts
Jumg instructions

46
overview

41

program control
4instructlons

single operand
instructions

4
(conéinued)

Instruction set (cont.)
suproutine |
instructions
45,46
sunmary
51 to 83
trags
4
Interrupt

conditions
u?ggr memory control

description
96 _to 99
handling
13,147
instructions
46
linkage
92

sof tware
see Traps
vector
13,14
INTR (Bus Interrupt)

10T (f/0 Trap)
instruction
6,67

I-phase
p340'244

JMP (Jump) instruction
48785°

JSR (Jump to
Subroutine)
instruction

45,69,91,95

Ju insfructions

5
Jump tables
adzge551ng

Kernel mode
139,161
KT1l memory management
unit
210)
KT/cache section
237

In-Li

KY11-P programmers'
console
217 to 228

LDCDF (Load and Convert
from Double to
Floating)
instruction

264,265

LDCFD (Load and Convert
from_Floating to,
Double) instruction

264,265 _

LDCID (Load and Convert
Integer to Double)
instruction
65,266 ,

LDCIF (Load and Convert
Integer to
Floa 1n%)
instruction

265,266

LDCLD (Load and Convert
Long_Integer to
Double) instruction

265,266

LDCLF (Load and Convert
Long Integer to
Floating)
instruction

LDD (Load Doyble)
instr pct ion

267
LDEXP (Load Exponent)
instruction
66,267)
LDF (Load Floating)
instruction

267
LDFPS (Load FPP's
Program Status)
instruction
268

LDUB (Load Microbreak
Register)
7l;)nstructlon

Linkage information

storin
51767

INDEX 7

Li-ML

Linkage register
L0091,95t hni
ing_ techniques
?26?127 9
M9301 modules
132 to 135
Machine-language

1nstruc 1gns
proces51 phases
240 to 241

Machlne state
see Processor, state
Macro-level
architecture
see also
Architecture

Macro-level
organization
36,237

MAR%Oinstruction

Master ,
bug operations

MDT (Mul:;‘oDebugg ing

239
MED (Maintenance
Examine and DEP)
instruction
1l to 73

Memory
see also Page
addressing
9,21 to 39,140
DUflprlorltY

PD§—11/04

protection
144 to 151
(continued)

Memory (cont.)
references

206,207
MemorY management
1/34

P_

138 to 157
PDP=11/45 and 11/55

177 to 196

re?lste
82 to 186,195,196
Memory sy@tem error

MFPD (Move From
Previous Data
Svace) instruction

46,73,

MFPI (Move From
Previous
Instruction Space)

instruction
46,73,156,168

dFB% 1natruct10n

MIC59-11/60

MicroDebugging Tool
MDT)QQ g

239
Microinstructions

Micro-level
architecture
36,237

Mlcro—iev 1
organlzatlon
237

Mlcro?ro?ram Loader

s
icroprogrammin
23? tg 244 7

Miss écache operation)

WLD (Microprogram
Load er? 9
238

INDEX 8

-

MNS (Maintenance
Normalization
Snlft) instruction

72
MODD (Multiply and
Integerize Double)
instruction
268 to 271
Modes

CPU
PDP-11/45 and 11/55
63,164
MODF (Multlply and
Int erlze

Floa
1nstruc 1on

MOS nemorx
PDP-ll/O

PDP—ll 34
131,132,138
ppp-11/60

MOVB _ (Move Byte)
instruction

MOV £Move) instruction

MPP Malntenance
artial Product)
in;gructlon

MTPD (Move to Previous
Data Space)
instruction

46,75,156,168

MTPI (Move to Previous
Instruction Space)
instruction

46,75,156,168

MIPS 1nstruct10n

MULD (Muitlgly Double)
z%nstr uction
MULF (Multipl
Floatin p Y
1nstruc 1on
271

MN-NP

MUL (Multiply)
7%.nstructlon

Multlgle address space
145 to 147
Multlgllcatlon methods

MUltlg;to 151, 127 to

N bit
47,48
NEGB (Negate Byte)
instruction

NEGD (Negate Double)
2%gstructlon

NEGF _ (Negate Floating)
1nstruct10n

NEG N ate)
ructlon

Nestlng
automatic
95,96
interrupts
97 to 99 |
Non-consecutive memory
1gages

Non-processor grant
NPG

o P 18 .
ON—=processor regues
?NPR eques

bus control
l2 14 15,18
PDP—i 760

Nonresident |
abort condition

14

NPG (non—processor
3rant
12,15,18

INDEX 9

NP-PD

NPR (non-processor
request
bus contro
11,12,14,15,18
P—i /60
2006, 207
Num%rlcal notation

odd addre551ng error

ra
108 ?67
OEMSgroup

rati systems
OESP-llng y

DP-11/34
135 to 137
PDP—ll/45 and 11/55
170 to 177
O—phase
241,144
Organlzatlon

4

6
14
rato;'s console

Package Systems
508 Y

14
Page
control
142,143,145 to 151
defgglptlon

examples
19 to 194

ans

48 to 151 185

length

abort condition
155,187

ex

Page Aédress Register
1 0 141 146,147,179,
183,184

Page Descrlptor

ster
1489141 14 182

Page Length Field (PLF)

150,1

PAR (Page Address

148gl4l 136 147,179,

18§,18
PDP—¥1/60
213 to 216
ParltX
PDP- 1/34
Patchln?
PC absolute mode
PC immediate mode
pC 24,31,32,36, 32)
ram’ counter
% og 30 9lul62
PC reiatlve deferred
33 34 37 39 86
32 33 37 39 86
addressing modes
21 to 3

architecture

PC rei
PDP-1 1

bloék structure
dogémentation

instruction set)
seetalso Instruction

se
41 to 83
opirgtlng systems
pegipherals
pr%ce vs. performance
riority_ system
P 14 t yl6y
programmlnq
gee also Programming

PDP-11,/04
129,130

INDEX 10

PDP-11/34
bogggtrap loader

console emulator
134,135

features

floating point
processor
see also FP11-A
247
memory
131,132,137,138
memory management
138" to 15
operator's_console
135 to 137
processor backplane
137,138
PDP-11/45
features
159 .
floating point

processor
séee also FP11-C
124

memory management
l77yto 18%

memory
%g@ to 166
multiprogramming
167pto 170
operator 's_console
170 to 177
processor
160 to 164
specifications
168 to 170
PDP-11/55
features
160 i
floating point
processor
see also FP11-C
247

memory management
177 to 19
memory
%g4 to 166
multiprogrammin:
167?t89170 9
(continued)

INDEX

PD-Ph

PDP-11/55 (cont.)
operator's_console
170 to 177
processor
16Qf§o %64
specifications
p<1368 to 170
PDP-11/60 .
extended instruction
set
230
features
199)
floating point
pProcéssor
see also FPll-E
. 229,230,247
interrupt system
230

memory

199" to 210,212,213
microprogrammin

S5 o540 0
programmer's console

217 to 228

ém t
Reliability and
Maintenance Program
30,231

pro?;aTmable stack
22

specifications
PSSI

PDP-11/70 .
floating point
processor
see also FP11-C
247

PDR (Page Descriptor
Register)
140,141,147,184

Peripherals

PDP-11

5
Physical address
constructed from

virtual
152 to 154,180 to
182,211,212

11

PI-Re

PIC (Pgsltlgn-t Coding)
Independen i
85 t p§9 =

PLF éPa?e Len%th Field)
P01gfers
POP stack operation
20,91
Position-independent
code
85 to 89
Power failure
efggct on cache memory
Power failure trap
108,167
Priority
bus control
9,11,13 to 16
Processor
priority
11,16°,164
state
235,236

trags

108 to 111,166,167

Processor control
section
237

Processor memory
reference

cache memor

204 to 20]
Processor status word

éPS)

14,163,168

Program control
1ns£ruct10ns

Program counter
addressin
24,30 to 3 36 37 39
Program counter éPC
1,22,30,91,162
Programmable stack
l%mlt

Programmer's console
PDP-11/60
217 to 228

Programming
examples
115 to 125
PDP-11 i
see also Instruction
2set

techniques
85 to 115
Pro?ram relocation
42 to 144,210 to

Protectlon
memory
144 to 151
PS (Processor status

14, lﬁg 168
Pure code’

PUSH stack operation
90,91

RAMP (Reliability and
Malntenance
ram)
230 31
Read—only .
abort condition’
,188
memory
145
Realization
236

Recursion

106 to 108
Reentran

99 to 101
Reentrant code

Reglster deferred mode

24,25,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>